Revision Notes on Constructions

Division of a Line Segment

If we have to divide a line segment in particular ratio, then we can do it by measuring the length on the ruler and mark it on the line. But if we don't have anything to measure then we can do it by using steps of construction.

Method 1

$A B$ is a line segment of 4 cm . Divide it in the ratio of $1: 3$ using a
compass.

Steps of Construction

Step 1: Draw a line $A C$ of any length by making an acute angle with the given line segment $A B$.
Step 2: Using any small length on the compass mark 4 points of equal size on $A C$, so that $A X_{1}=A X_{2}=A X_{3}=A X_{4}$. We are marking 4 points as we have to divide the line in the ratio of $1: 3$, so $1+3=4$.
Step 3: Now join BX_{4}.
Step 4: Draw a line from point X_{1} to line $A B$ parallel to $B X_{4}$, which intersects $A B$ at point P.
Now AP: PB = 1:3.

[^0]The scale factor is the ratio of the sides of the triangle given to the sides of the triangle to be made by the steps of construction.

Example:

Draw a triangle similar to $\triangle A B C$ with its sides equal to $2 / 3$ of the corresponding sides of the given triangle $A B C$. (Scale factor = 2/3).

Steps of Construction

Step 1: Draw a line $A X$ by making an acute angle with the line segment $A B$.
Step 2: Mark three points of equal size using a compass on the line $A X$. Points will be depending upon the scale factor as we have to mark the number of points which is greater in the scale factor. In the ratio of $2 / 3(3>2)$.
Step 3: Join $B X_{3}$ and draw a line from X_{2} parallel to $B X_{3}$ to intersect $A B$ at P.
Step 4: Draw a line parallel to $B C$ from point P to intersect $A C$ at Q.
Now $\triangle A P Q$ ~ $\triangle A B C$.
Remark: Here we have made a similar triangle which is smaller than the given triangle because the scale factor was $2 / 3$. But if we have scale factor like $5 / 3$ then we will make a bigger triangle then the given triangle by taking 5 points on the line).

Construction of Tangents to a Circle

Tangent is a line which intersects the circle at one point only at the outer of the circle. It is always perpendicular to the radius of the circle.

Example:

Construct the pair of tangents to the circle of radius 3 cm from the point which is 7 cm away from its centre, and measure theirlengths also.

Steps of Construction

Step 1: Draw a circle of radius 3 cm by taking O as the centre.
Step 2: Mark a point P outside the circle at a distance of 7 cm from the centre 0 . Join OP.
Step 3: Bisect the-line segment OP, so that the perpendicular bisector of OP intersects it at the point M.
Step 4: Now draw another circle by taking M as centre and $M O$ as radius, which intersects the given circle at two points' i.e. T and T^{\prime}.
Step 5: Now join PT and PT' which are the required tangents and measure the length of the tangents.

[^0]: A line can also be divided by another method.
 Steps of Construction
 Step 1: Draw a line $A C$ with the acute angle with the line segment $A B$.
 Step 2: Draw another line $D B$ parallel to $A C$ so that $\angle B A X=\angle A D B$
 Step 3: Mark the points $X_{1}(m=1)$ on $A C$ and $\left.Y_{1}, Y_{2}, Y_{3} n=3\right)$ on $D B$ so that $A X_{1}=B Y_{1}=Y_{1} Y_{2}=Y_{2} Y_{3}$.
 Step 4: Join $X_{1} Y_{3}$ so that it intersects line $A B$ at P.
 AP:PB = 1:3
 Construction of a Triangle similar to a given Triangle as per given Scale

