Revision Notes on Quadratic Equations

Quadratic Polynomial

A polynomial, whose degree is 2 , is called a quadratic polynomial. It is in the form of
$p(x)=a x^{2}+b x+c$, where $a \neq 0$

Quadratic Equation

When we equate the quadratic polynomial to zero then it is called a Quadratic Equation i.e. if
$p(x)=0$, then it is known as Quadratic Equation.

Standard form of Quadratic Equation

$$
a x^{2}+b x+c=0
$$

where a, b, c are the real numbers and $a \neq 0$

Types of Quadratic Equations

1. Complete Quadratic Equation $a x^{2}+b x+c=0$, where $a \neq 0, b \neq 0, c \neq 0$
2. Pure Quadratic Equation $\quad x^{2}=0$, where $a \neq 0, b=0, c=0$

Roots of a Quadratic Equation

Let $x=\alpha$ where α is a real number. If α satisfies the Quadratic Equation $a x^{2}+b x+c=0$ such that $a \alpha^{2}+b \alpha+c=0$, then $\boldsymbol{\alpha}$ is the root of the Quadratic Equation.
As quadratic polynomials have degree 2, therefore Quadratic Equations can have two roots. So the zeros of quadratic polynomial $p(x)=a x^{2}+b x+c$ is same as the roots of the Quadratic Equation $a x^{2}+b x+c=0$.

Methods to solve the Quadratic Equations

There are three methods to solve the Quadratic Equations-

1. Factorisation Method

In this method, we factorise the equation into two linear factors and equate each factor to zero to find the roots of the given equation.

Step 1: Given Quadratic Equation in the form of $a x^{2}+b x+c=0$.
Step 2: Split the middle term $b x$ as $m x+n x$ so that the sum of m and n is equal to b and the product of m and n is equal to ac.
Step 3: By factorization we get the two linear factors $(x+p)$ and ($x+q$)
$a x^{2}+b x+c=0=(x+p)(x+q)=0$
Step 4: Now we have to equate each factor to zero to find the value of x.

$$
\begin{gathered}
x^{2}-2 x-15=0 \\
(x+3)(x-5)=0 \\
x+3=0 \text { or } x-5=0 \\
x=-3 \text { or } x=5 \\
x=\{-3,5\}
\end{gathered}
$$

These values of x are the two roots of the given Quadratic Equation.

2. Completing the square method

In this method, we convert the equation in the square form $(x+a)^{2}-b^{2}=0$ to find the roots.
Step1: Given Quadratic Equation in the standard form $a x^{2}+b x+c=0$.
Step 2: Divide both sides by a

$$
x^{2}+\frac{b}{a} x+\frac{c}{a}=0
$$

$$
\begin{gathered}
x^{2}+\frac{b}{a} x=-\frac{c}{a} \\
x^{2}+2\left(\frac{b}{2 a}\right) x+\left(\frac{b}{2 a}\right)^{2}=-\frac{c}{a}+\left(\frac{b}{2 a}\right)^{2}
\end{gathered}
$$

Step 4: Now write LHS as perfect square and simplify the RHS.

$$
\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 a^{2}}
$$

Step 5: Take the square root on both the sides.

$$
\mathrm{x}+\frac{\mathrm{b}}{2 \mathrm{a}}= \pm \sqrt{\frac{\mathrm{b}^{2}-4 \mathrm{ac}}{4 \mathrm{a}^{2}}}
$$

Step 6: Now shift all the constant terms to the RHS and we can calculate the value of x as there is no variable at the RHS.

$$
\mathrm{x}= \pm \sqrt{\frac{\mathrm{b}^{2}-4 \mathrm{ac}}{4 \mathrm{a}^{2}}}-\frac{\mathrm{b}}{2 \mathrm{a}}
$$

3. Quadratic formula method

In this method, we can find the roots by using quadratic formula. The quadratic formula is

where a, b and c are the real numbers and $\mathrm{b}^{2}-4 \mathrm{ac}$ is called discriminant.
To find the roots of the equation, put the value of a, b and c in the quadratic formula.

Nature of Roots

From the quadratic formula, we can see that the two roots of the Quadratic Equation are -

$$
\begin{gathered}
x=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \text { and } \frac{-b-\sqrt{b^{2}-4 a c}}{2 a} \\
\text { or } x=\frac{-b \pm \sqrt{D}}{2 a}
\end{gathered}
$$

Where $\mathbf{D}=\mathbf{b}^{2}$ - 4ac
The nature of the roots of the equation depends upon the value of D, so it is called the discriminant.

$\Delta=$ Discriminant

Value of discriminant	No. of roots	Value of roots
$D>0$	Two distinct real roots	$\frac{-b+\sqrt{D}}{2 a}, \frac{-b-\sqrt{D}}{2 a}$
$D=0$	Two equal and real roots	$-\frac{b}{2 a},-\frac{b}{2 a}$
$D<0$	No real roots	Nil

