## Exercise 3.3 Page: 50

**1. Given a parallelogram ABCD. Complete each statement along with the definition or property used.**

(i) AD = …… (ii) ∠DCB = ……

(iii) OC = …… (iv) m ∠DAB + m ∠CDA = ……

Solution:

(i) AD = BC (Opposite sides of a parallelogram are equal)

(ii) ∠DCB = ∠DAB (Opposite angles of a parallelogram are equal) (iii) OC = OA (Diagonals of a parallelogram are equal)

(iv) m ∠DAB + m ∠CDA = 180°

**2. Consider the following parallelograms. Find the values of the unknown x, y, z**

Solution:

(i)

**4. Draw a rough figure of a quadrilateral that is not a parallelogram but has exactly two opposite angles of equal measure.**

Solution:

ABCD is a figure of quadrilateral that is not a parallelogram but has exactly two opposite

angles that is ∠B = ∠D of equal measure. It is not a parallelogram because ∠A ≠ ∠C.

**5. The measures of two adjacent angles of a parallelogram are in the ratio 3 : 2. Find the measure of each of the angles of the parallelogram.**

Solution:

Let the measures of two adjacent angles ∠A and ∠B be 3x and 2x respectively in

parallelogram ABCD.

∠A + ∠B = 180°

⇒ 3x + 2x = 180°

⇒ 5x = 180°

⇒ x = 36°

We know that opposite sides of a parallelogram are equal.

∠A = ∠C = 3x = 3 × 36° = 108°

∠B = ∠D = 2x = 2 × 36° = 72°

**6. Two adjacent angles of a parallelogram have equal measure. Find the measure of each of the angles of the parallelogram.**

Solution:

Let ABCD be a parallelogram.

Sum of adjacent angles of a parallelogram = 180°

∠A + ∠B = 180°

⇒ 2∠A = 180°

⇒ ∠A = 90°

also, 90° + ∠B = 180°

⇒ ∠B = 180° – 90° = 90°

∠A = ∠C = 90°

∠B = ∠D = 90

°

**7. The adjacent figure HOPE is a parallelogram. Find the angle measures x, y and z. State the properties you use to find them.**

Solution:

y = 40° (alternate interior angle)

∠P = 70° (alternate interior angle)

∠P = ∠H = 70° (opposite angles of a parallelogram)

z = ∠H – 40°= 70° – 40° = 30°

∠H + x = 180°

⇒ 70° + x = 180°

⇒ x = 180° – 70° = 110°

**8. The following figures GUNS and RUNS are parallelograms. Find x and y. (Lengths are in cm)**

Solution:

(i) SG = NU and SN = GU (opposite sides of a parallelogram are equal) 3x = 18

x = 18/3

⇒ x =6

3y – 1 = 26 an

d,

⇒ 3y = 26 + 1

⇒ y = 27/3=9

x = 6 and y = 9

(ii) 20 = y + 7 and 16 = x + y (diagonals of a parallelogram bisect each other) y + 7 = 20

⇒ y = 20 – 7 = 13 and,

x + y = 16

⇒ x + 13 = 16

⇒ x = 16 – 13 = 3

x = 3 and y = 13

**9. In the above figure both RISK and CLUE are parallelograms. Find the value of x.**

Solution:

∠K + ∠R = 180° (adjacent angles of a parallelogram are supplementary)

⇒ 120° + ∠R = 180°

⇒ ∠R = 180° – 120° = 60°

also, ∠R = ∠SIL (corresponding angles)

⇒ ∠SIL = 60°

also, ∠ECR = ∠L = 70° (corresponding angles) x + 60° + 70° = 180° (angle sum of a triangle)

⇒ x + 130° = 180°

⇒ x = 180° – 130° = 50°

**10. Explain how this figure is a trapezium. Which of its two sides are parallel? (Fig 3.32)**

Solution:

When a transversal line intersects two lines in such a way that the sum of the adjacent angles on the same side of transversal is 180° then the lines are parallel to each other. Here, ∠M + ∠L = 100° + 80° = 180°

Thus, MN || LK

As the quadrilateral KLMN has one pair of parallel line therefore it is a trapezium. MN and LK are parallel lines.

Solution:

m∠C + m∠B = 180° (angles on the same side of transversal)

⇒ m∠C + 120° = 180°

⇒ m∠C = 180°- 120° = 60°

**12. Find the measure of ∠P and ∠S if SP || RQ ? in Fig 3.34. (If you find m∠R, is there more than one ****method to find m∠P?)**

Solution:

∠P + ∠Q = 180° (angles on the same side of transversal)

⇒ ∠P + 130° = 180°

⇒ ∠P = 180° – 130° = 50°

also, ∠R + ∠S = 180° (angles on the same side of transversal)

⇒ 90° + ∠S = 180°

⇒ ∠S = 180° – 90° = 90°

Thus, ∠P = 50° and ∠S = 90°

Yes, there are more than one method to find m∠P.

PQRS is a quadrilateral. Sum of measures of all angles is 360°.

Since, we know the measurement of ∠Q, ∠R and ∠S.

∠Q = 130°, ∠R = 90° and ∠S = 90°

∠P + 130° + 90° + 90° = 360°

⇒ ∠P + 310° = 360°

⇒ ∠P = 360° – 310° = 50°