Course Content
Class 8th Science
0/36
Class 8 Social Science History
0/24
Online Class For 8th Standard Students (CBSE) (English Medium)
About Lesson

Exercise 8.1 

Q1. Identify the terms, their coefficients for each of the following expressions. (i) 5xyz2 – 3zy (ii) 1 + x + x2(iii) 4x2y2 – 4x2y2z2 + z2 (iv) 3 – pq + qr – p (v) (x/2) + (y/2) – xy (vi) 0.3a – 0.6ab + 0.5b

Solution :

Sl. No. Expression Term Coefficient
i) 5xyz2 – 3zy

Term: 5xyz2

Term: -3zy

5 -3
ii) 1 + x + x2 Term: 1
Term: x
Term: x2
1 1 1
iii) 4x2y2 – 4x2y2z2 + z2 Term: 4x2y2
Term: -4 x2y2z2
Term :  z2
4 -4 1
iv) 3 – pq + qr – p Term : 3 -pq qr -p 3 -1 1 -1
v) (x/2) + (y/2) – xy Term : x/2 Y/2 -xy ½ 1/2 -1
vi) 0.3a – 0.6ab + 0.5b Term : 0.3a -0.6ab 0.5b 0.3 -0.6 0.5
 

2. Classify the following polynomials as monomials, binomials, trinomials. Which polynomials do not fit in any of these three categories? x + y, 1000, x + x2 + x3 + x4 , 7 + y + 5x, 2y – 3y2 , 2y – 3y2 + 4y3 , 5x – 4y + 3xy, 4z – 15z2 , ab + bc + cd + da, pqr, p2q + pq2 , 2p + 2q

Solution:

Let us first define the classifications of these 3 polynomials:

Monomials contain only one term.

Binomials contain only two terms.

Trinomials contain only three terms.

x + y two terms Binomial
1000 one term Monomial
x + x2 + x3 + x4 four terms Polynomial, and it does not fit in the listed three categories
2y – 3y2 two terms Binomial
2y – 3y2 + 4y3 three terms Trinomial
5x – 4y + 3xy three terms Trinomial
4z – 15z2 two terms Binomial
ab + bc + cd + da four terms Polynomial, and it does not fit in the listed three categories
pqr one term Monomial
p2q + pq2 two terms Binomial
2p + 2q two terms Binomial
7 + y + 5x three terms Trinomial

3.  Add the following.

(i) ab – bc, bc – ca, ca – ab

(ii) a – b + ab, b – c + bc, c – a + ac

(iii) 2p2q2 – 3pq + 4, 5 + 7pq – 3p2q2

(iv) l2 + m2, m2 + n2, n2 + l2, 2lm + 2mn + 2nl

Solution:

i) (ab – bc) + (bc – ca) + (ca-ab)

= ab – bc + bc – ca + ca – ab

= ab – ab – bc + bc – ca + ca

= 0

ii) (a – b + ab) + (b – c + bc) + (c – a + ac)

= a – b + ab + b – c + bc + c – a + ac

= a – a +b – b +c – c + ab + bc + ca

= 0 + 0 + 0 + ab + bc + ca

= ab + bc + ca

iii) 2p2q2 – 3pq + 4, 5 + 7pq – 3p2q2

= (2p2q2 – 3pq + 4) + (5 + 7pq – 3p2q2)

= 2p2q2 – 3p2q2 – 3pq + 7pq + 4 + 5

= – p2q2 + 4pq + 9

iv)(l2 + m2) + (m2 + n2) + (n2 + l2) + (2lm + 2mn + 2nl)

= l2 + l2 + m2 + m2 + n2 + n2 + 2lm + 2mn + 2nl

= 2l2 + 2m2 + 2n2 + 2lm + 2mn + 2nl

4. (a) Subtract 4a – 7ab + 3b + 12 from 12a – 9ab + 5b – 3

(b) Subtract 3xy + 5yz – 7zx from 5xy – 2yz – 2zx + 10xyz

 (c) Subtract 4p2q – 3pq + 5pq2 – 8p + 7q – 10 from 18 – 3p – 11q + 5pq – 2pq2 + 5p2q

Solution:

(a) (12a – 9ab + 5b – 3) – (4a – 7ab + 3b + 12)

= 12a – 9ab + 5b – 3 – 4a + 7ab – 3b – 12

= 12a – 4a -9ab + 7ab +5b – 3b -3 -12

= 8a – 2ab + 2b – 15

b) (5xy – 2yz – 2zx + 10xyz) – (3xy + 5yz – 7zx)

= 5xy – 2yz – 2zx + 10xyz – 3xy – 5yz + 7zx

=5xy – 3xy – 2yz – 5yz – 2zx + 7zx + 10xyz

= 2xy – 7yz + 5zx + 10xyz

c) (18 – 3p – 11q + 5pq – 2pq2 + 5p2q) – (4p2q – 3pq + 5pq2 – 8p + 7q – 10)

= 18 – 3p – 11q + 5pq – 2pq2 + 5p2q – 4p2q + 3pq – 5pq2 + 8p – 7q + 10

=18+10 -3p+8p -11q – 7q + 5 pq+ 3pq- 2pq^2 – 5pq^2 + 5 p^2 q – 4p^2 q

= 28 + 5p – 18q + 8pq – 7pq2 + p2q

Exercise 8.2 

1. Find the product of the following pairs of monomials.

(i) 4, 7p

(ii) – 4p, 7p

(iii) – 4p, 7pq

(iv)  4p3, – 3p

(v) 4p, 0

Solution:

(i) 4 , 7 p =  4 × 7 × p = 28p

(ii) – 4p × 7p = (-4 × 7 ) × (p × p )= -28p2

(iii) – 4p × 7pq =(-4 × 7 ) (p × pq) =  -28p2q

(iv) 4p3 × – 3p = (4 × -3 ) (p3 × p ) =  -12p4

(v) 4p ×  0 = 0

2. Find the areas of rectangles with the following pairs of monomials as their lengths and breadths, respectively.

(p, q) ; (10m, 5n) ; (20x2 , 5y2) ; (4x, 3x2) ; (3mn, 4np)

Solution:

Area of rectangle = Length x breadth. So, it is multiplication of two monomials.

The results can be written in square units.

(i) p × q = pq

(ii)10m ×  5n = 50mn

(iii) 20x2 ×  5y2 =  100x2y2

(iv) 4x × 3x2 = 12x3

(v) 3mn ×  4np = 12mn2p

3. Complete the following table of products:

4. Obtain the volume of rectangular boxes with the following length, breadth and height, respectively.

(i) 5a, 3a2, 7a4

(ii) 2p, 4q, 8r

(iii) xy, 2x2y, 2xy2

(iv) a, 2b, 3c

Solution:

Volume of rectangle = length x  breadth x  height. To evaluate volume of rectangular boxes, multiply all the monomials.

(i) 5a x 3a2 x 7a4 = (5 × 3 × 7) (a × a2 × a4 ) = 105a7

(ii) 2p x 4q x 8r = (2 × 4 × 8 ) (p × q × r ) = 64pqr

(iii) y × 2x2y × 2xy2 =(1 × 2 × 2 )( x × x2 × x × y × y × y2 ) =  4x4y4

(iv) a x  2b x 3c = (1 × 2 × 3 ) (a × b × c) = 6abc

5. Obtain the product of

(i) xy,  yz, zx

(ii) a, – a2 , a3

(iii) 2, 4y, 8y2 , 16y3

(iv) a, 2b, 3c, 6abc

(v) m, – mn, mnp

Solution:

(i) xy × yz × zx = xyz2

(ii) a × – a2  × a= – a6

(iii) 2 × 4y × 8y2 × 16y= 1024 y6

(iv) a × 2b × 3c × 6abc = 36abc2

(v) m × – mn × mnp = –mnp

 

Exercise 8.3 

1. Carry out the multiplication of the expressions in each of the following pairs.

(i) 4p, q + r

(ii) ab, a – b

(iii) a + b, 7a²b²

(iv) a– 9, 4a

(v) pq + qr + rp, 0

Solution:

(i)4p(q + r) = 4pq + 4pr

(ii)ab(a – b) = ab – a b2

(iii)(a + b) (7a2b2) = 7a3b2 + 7a2b3

(iv) (a2 – 9)(4a) = 4a3 – 36a

(v) (pq + qr + rp) × 0 = 0 ( Anything multiplied by zero is zero )

2. Complete the table.

3. Find the product.

i) a2 x (2a22) x (4a26)

ii) (2/3 xy) ×(-9/10 x2y2)

(iii) (-10/3 pq3/) × (6/5 p3q)

(iv) (x) × (x2) × (x3) × (x4)

Solution:

i) a2 x (2a22) x (4a26)

= (2 × 4) ( a2 × a22 × a26 )

= 8 × a2 + 22 + 26 

= 8a50

ii) (2xy/3) ×(-9x2y2/10)

=(2/3 × -9/10 ) ( x × x2 × y × y2 )

= (-3/5 x3y3)

iii) (-10pq3/3) ×(6p3q/5)

= ( -10/3 × 6/5 ) (p × p3× q3 × q)

= (-4p4q4)

iv)  ( x) x (x2) x (x3) x (x4)

= x 1 + 2 + 3 + 4 

=  x10

4. (a) Simplify 3x (4x – 5) + 3 and find its values for (i) x = 3 (ii) x =1/2

(b) Simplify a (a2+ a + 1) + 5 and find its value for (i) a = 0, (ii) a = 1 (iii) a = – 1.

Solution:

a) 3x (4x – 5) + 3

=3x ( 4x) – 3x( 5) +3

=12x2 – 15x + 3

(i) Putting x=3 in the equation we gets 12x2 – 15x + 3 =12(32) – 15 (3) +3

= 108 – 45 + 3

= 66

(ii) Putting x=1/2 in the equation we get

12x2 – 15x + 3 = 12 (1/2)2 – 15 (1/2) + 3

= 12 (1/4) – 15/2 +3

= 3 – 15/2 + 3

= 6- 15/2

= (12- 15 ) /2

= -3/2

b) a(a+a +1)+5

= a x a2 + a x a + a x 1 + 5 =a3+a2+a+ 5

(i) putting a=0 in the equation we get 03+02+0+5=5

(ii) putting a=1 in the equation we get 1+ 1+ 1+5 = 1 + 1 + 1+5 = 8

(iii) Putting a = -1 in the equation we get (-1)3+(-1)+ (-1)+5 = -1 + 1 – 1+5 = 4

5. (a) Add: p ( p – q), q ( q – r) and r ( r – p) 

(b) Add: 2x (z – x – y) and 2y (z – y – x) 

(c) Subtract: 3l (l – 4 m + 5 n) from 4l ( 10 n – 3 m + 2 l ) 

(d) Subtract: 3a (a + b + c ) – 2 b (a – b + c)  from 4c ( – a + b + c )

Solution:

a) p ( p – q) + q ( q – r) + r ( r – p)

= (p2 – pq) + (q2 – qr) + (r2 – pr)

= p2 + q2 + r2 – pq – qr – pr

b) 2x (z – x – y) + 2y (z – y – x)

= (2xz – 2x2 – 2xy) + (2yz – 2y2 – 2xy)

= 2xz – 4xy + 2yz – 2x2 – 2y2

c) 4l ( 10 n – 3 m + 2 l ) – 3l (l – 4 m + 5 n)

= (40ln – 12lm + 8l2) – (3l2 – 12lm + 15ln)

= 40ln – 12lm + 8l2 – 3l2 +12lm -15 ln

= 25 ln + 5l2

d) 4c ( – a + b + c ) – (3a (a + b + c ) – 2 b (a – b + c))

= (-4ac + 4bc + 4c2) – (3a2 + 3ab + 3ac – ( 2ab – 2b2 + 2bc ))

=-4ac + 4bc + 4c2 – (3a2 + 3ab + 3ac – 2ab + 2b2 – 2bc)

= -4ac + 4bc + 4c2 – 3a2 – 3ab – 3ac +2ab – 2b2 + 2bc

= -7ac + 6bc + 4c2 – 3a2 – ab – 2b2

 

Exercise 8.4 

1. Multiply the binomials.

(i) (2x + 5) and (4x – 3)

(ii) (y – 8) and (3y – 4)

(iii) (2.5l – 0.5m) and (2.5l + 0.5m)

(iv) (a + 3b) and (x + 5)

(v) (2pq + 3q2) and (3pq – 2q2)

(vi) (3/4 a2 + 3b2) and 4( a2 – 2/3 b2)

Solution :

(i) (2x + 5)(4x – 3)

2x x 4x – 2x x 3 + 5 x 4x – 5 x 3

8x² – 6x + 20x -15

8x² + 14x -15

ii) ( y – 8)(3y – 4)

= y x 3y – 4y – 8 x 3y + 32

= 3y2 – 4y – 24y + 32

= 3y2 – 28y + 32

(iii) (2.5l – 0.5m)(2.5l + 0.5m)

2.5l x 2.5 l + 2.5l x 0.5m – 0.5m x 2.5l – 0.5m x 0.5m

= 6.25l2 + 1.25 lm – 1.25 lm – 0.25 m2

= 6.25l2– 0.25 m2

iv) (a + 3b) (x + 5)

= ax + 5a + 3bx + 15b

v) (2pq + 3q2(3pq – 2q2)

= 2pq x 3pq – 2pq x 2q2 + 3q2 x 3pq – 3q2 x 2q2

= 6p2q2 – 4pq3 + 9pq3 – 6q4

= 6p2q2 + 5pq3 – 6q4

(vi) (3/4 a² + 3b² ) and 4( a² – 2/3 b² )

=(3/4 a² + 3b² ) x 4( a² – 2/3 b² )

=(3/4 a² + 3b² ) x (4a² – 8/3 b² )

=3/4 a² x (4a² – 8/3 b² ) + 3b² x (4a² – 8/3 b² )

=3/4 a² x 4a² -3/4 a² x 8/3 b² + 3b² x 4a² – 3b² x 8/3 b²

=3a4 – 2a² b² + 12 a²  b² – 8b4

= 3a4 + 10a²  b² – 8b4

2. Find the product.

(i) (5 – 2x) (3 + x)

(ii) (x + 7y) (7x – y)

(iii) (a2+ b) (a + b2)

(iv) (p– q2) (2p + q)

Solution:

(i) (5 – 2x) (3 + x)

= 5 (3 + x) – 2x (3 + x)

=15 + 5x – 6x – 2x2

= 15 – x -2 x 2

(ii) (x + 7y) (7x – y)

= x(7x-y) + 7y ( 7x-y)

=7x2 – xy + 49xy – 7y2

= 7x2 – 7y2 + 48xy

iii) (a2+ b) (a + b2)

= a2  (a + b2) + b(a + b2)

= a3 + a2b2 + ab + b3

= a3 + b3 + a2b2 + ab

iv) (p2– q2) (2p + q)

= p(2p + q) – q2 (2p + q)

=2p3 + p2q – 2pq2 – q3

= 2p3 – q3 + p2q – 2pq2

3. Simplify.

(i) (x2– 5) (x + 5) + 25

(ii) (a2+ 5) (b3+ 3) + 5

(iii)(t + s2)(t2 – s)

(iv) (a + b) (c – d) + (a – b) (c + d) + 2 (ac + bd)

(v) (x + y)(2x + y) + (x + 2y)(x – y)

(vi) (x + y)(x2– xy + y2)

(vii) (1.5x – 4y)(1.5x + 4y + 3) – 4.5x + 12y

(viii) (a + b + c)(a + b – c)

Solution:

i) (x2– 5) (x + 5) + 25

= x3 + 5x2 – 5x – 25 + 25

= x3 + 5x2 – 5x

ii) (a2+ 5) (b3+ 3) + 5

= a2b3 + 3a2 + 5b3 + 15 + 5

= a2b3 + 5b3 + 3a2 + 20

iii) (t + s2)(t2 – s)

t (t2 – s) + s2(t2 – s)

= t– st + s2t– s3

= t3 – s3 – st + s2t2

iv) (a + b) (c – d) + (a – b) (c + d) + 2 (ac + bd)

= (a + b) (c – d) + (a – b) (c + d) + 2 (ac + bd)

=(ac – ad + bc – bd) + (ac + ad – bc – bd) + (2ac + 2bd)

= ac – ad + bc – bd + ac + ad – bc – bd + 2ac + 2bd

= 4ac

v) (x + y)(2x + y) + (x + 2y)(x – y)

= 2x2 + xy + 2xy + y2 + x2 – xy + 2xy – 2y2

= 3x2 + 4xy – y2

vi) (x + y)(x2– xy + y2)

= x3 – x2y + xy2 + x2y – xy2 + y3

= x3 + y3

vii) (1.5x – 4y)(1.5x + 4y + 3) – 4.5x + 12y

= 2.25x2 + 6xy + 4.5x – 6xy – 16y2 – 12y – 4.5x + 12y = 2.25x2 – 16y2

viii) (a + b + c)(a + b – c)

= a2 + ab – ac + ab + b2 – bc + ac + bc – c2

= a2 + b2 – c2 + 2ab

 

Exercise 8.5 

1. Use a suitable identity to get each of the following products.

(i) (x + 3) (x + 3)

(ii) (2y + 5) (2y + 5)

(iii) (2a – 7) (2a – 7)

(iv) (3a – 1/2)(3a – 1/2)

(v) (1.1m – 0.4) (1.1m + 0.4)

(vi) (a2+ b2) (- a2+ b2)

(vii) (6x – 7) (6x + 7)

(viii) (- a + c) (- a + c)

(ix) (1/2x + 3/4y) (1/2x + 3/4y)

(x) (7a – 9b) (7a – 9b)

Solution:

(i) (x + 3) (x + 3) = (x + 3)2

= x2 + 6x + 9

Using (a+b) 2 = a2 + b2 + 2ab

ii) (2y + 5) (2y + 5) = (2y + 5)2

= 4y2 + 20y + 25

Using (a+b) 2 = a2 + b2 + 2ab

iii) (2a – 7) (2a – 7) = (2a – 7)2

= 4a2 – 28a + 49

Using (a-b) 2 = a2 + b2 – 2ab

iv) (3a – 1/2)(3a – 1/2) = (3a – 1/2)2

=  9a2 -3a+(1/4)

Using (a-b) 2  = a2 + b2 – 2ab

v)   (1.1m – 0.4) (1.1m + 0.4)

= 1.21m2 – 0.16

Using (a – b)(a + b) = a2 – b2

vi) (a2+ b2) (– a2+ b2)

= (b2 + a2 ) (b2 – a2)

= -a4 + b4

Using (a – b)(a + b) = a2 – b2

vii) (6x – 7) (6x + 7)

=36x2 – 49

Using (a – b)(a + b) = a2 – b2

viii) (– a + c) (– a + c) = (– a + c)2

= c2 + a2 – 2ac

Using (a-b) 2 = a2 + b2 – 2ab

Solution:

(i)(x + 3) (x + 7)

= x2 + (3+7)x + 21

= x2 + 10x + 21

ii) (4x + 5) (4x + 1)

= 16x2 + 4x + 20x + 5

= 16x2 + 24x + 5

iii) (4x – 5) (4x – 1)

= 16x2 – 4x – 20x + 5

= 16x2 – 24x + 5

iv) (4x + 5) (4x – 1)

= 16x2 + (5-1)4x – 5

= 16x2 +16x – 5

v) (2x + 5y) (2x + 3y)

= 4x2 + (5y + 3y)2x + 15y2

= 4x2 + 16xy + 15y2

vi) (2a2+ 9) (2a2+ 5)

= 4a4 + (9+5)2a2 + 45

= 4a4 + 28a2 + 45

vii) (xyz – 4) (xyz – 2)

= x2y2z2 + (-4 -2)xyz + 8

= x2y2z2 – 6xyz + 8

3. Find the following squares by using the identities.

(i) (b – 7)2

(ii) (xy + 3z)2

(iii) (6x2 – 5y)2

(iv) [(2m/3) + (3n/2)]2

(v) (0.4p – 0.5q)2

(vi) (2xy + 5y)2

Solution:

Using identities:

(a – b) 2 = a2 + b2 – 2ab (a + b) 2 = a2 + b2 + 2ab

(i) (b – 7)= b2 – 14b + 49

(ii) (xy + 3z)= x2y2 + 6xyz + 9z2

(iii) (6x2 – 5y)2 = 36x4 – 60x2y + 25y2

(iv) [(2m/3}) + (3n/2)]= (4m2/9) +(9n2/4) + 2mn

(v) (0.4p – 0.5q)2 = 0.16p2 – 0.4pq + 0.25q2

(vi) (2xy + 5y)2 = 4x2y2 + 20xy2 + 25y2

4. Simplify.

(i) (a– b2)2

(ii) (2x + 5) – (2x – 5)2

(iii) (7m – 8n)+ (7m + 8n)2

(iv) (4m + 5n)+ (5m + 4n)2

(v) (2.5p – 1.5q)– (1.5p – 2.5q)2

(vi) (ab + bc)2– 2ab²c

(vii) (m– n2m)+ 2m3n2

Solution:

i) (a2– b2)2 = a4 + b4 – 2a2b2

ii) (2x + 5) – (2x – 5)2
= 4x2 + 20x + 25 – (4x2 – 20x + 25) = 4x2 + 20x + 25 – 4x2 + 20x – 25 = 40x

iii) (7m – 8n)+ (7m + 8n)2
= 49m2 – 112mn + 64n2 + 49m2 + 112mn + 64n2
= 98m2 + 128n2

iv) (4m + 5n)+ (5m + 4n)2
= 16m2 + 40mn + 25n2 + 25m2 + 40mn + 16n2
= 41m2 + 80mn + 41n2

v) (2.5p – 1.5q)– (1.5p – 2.5q)2
= 6.25p2 – 7.5pq + 2.25q2 – 2.25p2 + 7.5pq – 6.25q2
= 4p2 – 4q2

vi) (ab + bc)2– 2ab²c = a2b2 + 2ab2c + b2c2 – 2ab2c = a2b2 + b2c2

vii) (m– n2m)+ 2m3n2
= m4 – 2m3n2 + m2n4 + 2m3n2
= m4 + m2n4

5. Show that.

(i) (3x + 7)– 84x = (3x – 7)2

(ii) (9p – 5q)2+ 180pq = (9p + 5q)2

(iii) (4/3m – 3/4n)2 + 2mn = 16/9 m2 + 9/16 n2

(iv) (4pq + 3q)2– (4pq – 3q)= 48pq2

(v) (a – b) (a + b) + (b – c) (b + c) + (c – a) (c + a) = 0

Solution:

i) LHS = (3x + 7)– 84x

= 9x2 + 42x + 49 – 84x
= 9x2 – 42x + 49
= RHS

LHS = RHS

ii)  LHS = (9p – 5q)2+ 180pq
= 81p2 – 90pq + 25q2 + 180pq
= 81p2 + 90pq + 25q2
RHS = (9p + 5q)2
= 81p2 + 90pq + 25q2
LHS = RHS

6. Using identities, evaluate.

(i) 71²

(ii) 99²

(iii) 1022

(iv) 998²

(v) 5.2²

(vi) 297 x 303

(vii) 78 x 82

(viii) 8.92

(ix) 10.5 x 9.5

Solution:

i) 712

= (70+1)2

= 702 + 140 + 12

= 4900 + 140 +1

= 5041

ii) 99²

= (100 -1)2

= 1002 – 200 + 12

= 10000 – 200 + 1

= 9801

iii) 1022

= (100 + 2)2

= 1002 + 400 + 22

= 10000 + 400 + 4 = 10404

iv) 9982

= (1000 – 2)2

= 10002 – 4000 + 22

= 1000000 – 4000 + 4

= 996004

v) 5.22

= (5 + 0.2)2

= 52 + 2 + 0.22

= 25 + 2 + 0.04 = 27.04

vi) 297 x 303

= (300 – 3 )(300 + 3)

= 3002 – 32

= 90000 – 9

= 89991

vii) 78 x 82

= (80 – 2)(80 + 2)

= 802 – 22

= 6400 – 4

= 6396

viii) 8.92

= (9 – 0.1)2

= 92 – 1.8 + 0.12

= 81 – 1.8 + 0.01

= 79.21

ix) 10.5 x 9.5

= (10 + 0.5)(10 – 0.5)

= 102 – 0.52

= 100 – 0.25

= 99.75

7. Using a– b2 = (a + b) (a – b), find

(i) 512– 492

(ii) (1.02)2– (0.98)2

(iii) 1532– 1472

(iv) 12.12– 7.92

Solution:

i) 512– 492

= (51 + 49)(51 – 49) = 100 x 2 = 200

ii) (1.02)2– (0.98)2

= (1.02 + 0.98)(1.02 – 0.98) = 2 x 0.04 = 0.08

iii) 153– 1472

= (153 + 147)(153 – 147) = 300 x 6 = 1800

iv) 12.1– 7.92

= (12.1 + 7.9)(12.1 – 7.9) = 20 x 4.2= 84

8. Using (x + a) (x + b) = x+ (a + b) x + ab, find

(i) 103 x 104

(ii) 5.1 x 5.2

(iii) 103 x 98

(iv) 9.7 x 9.8

Solution:

i) 103 x 104

= (100 + 3)(100 + 4)

= 1002 + (3 + 4)100 + 12

= 10000 + 700 + 12

= 10712

ii) 5.1 x 5.2

= (5 + 0.1)(5 + 0.2)

= 52 + (0.1 + 0.2)5 + 0.1 x 0.2

= 25 + 1.5 + 0.02

= 26.52

iii) 103 x 98

= (100 + 3)(100 – 2)

= 1002 + (3-2)100 – 6

= 10000 + 100 – 6

= 10094

iv) 9.7 x 9.8

= (9 + 0.7 )(9 + 0.8)

= 92 + (0.7 + 0.8)9 + 0.56

= 81 + 13.5 + 0.56

= 95.06

Wisdom TechSavvy Academy