Course Content
Class 7th Science
0/36
Class 7th Math
0/71
Online Class For 7th Standard Students (CBSE)
About Lesson

Exercise 12.4 Page: 246

1. Observe the patterns of digits made from line segments of equal length. You will find such segmented digits on the display of electronic watches or calculators.

Then,

The number of segments required to form 5 digits = ((5 × 5) + 2)

= (25 + 2)

= 27

The number of segments required to form 10 digits = ((5 × 10) + 2)

= (50 + 2)

= 52

The number of segments required to form 100 digits = ((5 × 100) + 1)

= (500 + 2)

= 502

2. Use the given algebraic expression to complete the table of number patterns.

S. No. Expression Terms
1st 2nd 3rd 4th 5th 10th 100th
(i) 2n – 1 1 3 5 7 9 19
(ii) 3n + 2 5 8 11 14
(iii) 4n + 1 5 9 13 17
(iv) 7n + 20 27 34 41 48
(v) n2 + 1 2 5 10 17 10001

Solution:-

(i) From the table (2n – 1)

Then, 100th term =?

Where n = 100

= (2 × 100) – 1

= 200 – 1

= 199

(ii) From the table (3n + 2)

5th term =?

Where n = 5

= (3 × 5) + 2

= 15 + 2

= 17

Then, 10th term =?

Where n = 10

= (3 × 10) + 2

= 30 + 2

= 32

Then, 100th term =?

Where n = 100

= (3 × 100) + 2

= 300 + 2

= 302

(iii) From the table (4n + 1)

5th term =?

Where n = 5

= (4 × 5) + 1

= 20 + 1

= 21

Then, 10th term =?

Where n = 10

= (4 × 10) + 1

= 40 + 1

= 41

Then, 100th term =?

Where n = 100

= (4 × 100) + 1

= 400 + 1

= 401

(iv) From the table (7n + 20)

5th term =?

Where n = 5

= (7 × 5) + 20

= 35 + 20

= 55

Then, 10th term =?

Where n = 10

= (7 × 10) + 20

= 70 + 20

= 90

Then, 100th term =?

Where n = 100

= (7 × 100) + 20

= 700 + 20

= 720

(v) From the table (n2 + 1)

5th term =?

Where n = 5

= (52) + 1

= 25+ 1

= 26

Then, 10th term =?

Where n = 10

= (102) + 1

= 100 + 1

= 101

So the table is completed below.

S. No. Expression Terms
1st 2nd 3rd 4th 5th 10th 100th
(i) 2n – 1 1 3 5 7 9 19 199
(ii) 3n + 2 5 8 11 14 17 32 302
(iii) 4n + 1 5 9 13 17 21 41 401
(iv) 7n + 20 27 34 41 48 55 90 720
(v) n2 + 1 2 5 10 17 26 101 10001

 

Wisdom TechSavvy Academy