Course Content
CHAPTER 10: HALOALKANES AND HALOARENES
Topic Name 10 Haloalkanes and Haloarenes 10.1 Classification 10.2 Nomenclature 10.3 Nature of C–X Bond 10.4 Methods of Preparation of Haloalkanes 10.5 Preparation of Haloarenes 10.6 Physical Properties 10.7 Chemical Reactions
0/4
CHAPTER 11: ALCOHOLS, PHENOLS AND ETHERS
Topic Name 11 Alcohols, Phenols and Ethers 11.1 Classification 11.2 Nomenclature 11.3 Structures of Functional Groups 11.4 Alcohols and Phenols 11.5 Some Commercially Important Alcohols 11.6 Ethers
0/3
CHAPTER 13: AMINES
Topic Name 13 Amines 13.1 Structure of Amines 13.2 Classification 13.3 Nomenclature 13.4 Preparation of Amines 13.5 Physical Properties 13.6 Chemical Reactions 13.7 Method of Preparation of Diazonium Salts 13.8 Physical Properties 13.9 Chemical Reactions 13.10 Importance of Diazonium Salts in Synthesis of Aromatic Compounds
0/3
CHAPTER 14: BIOMOLECULES
Topic Name 14 Biomolecules 14.1 Carbohydrates 14.2 Proteins 14.3 Enzymes 14.4 Vitamins 14.5 Nucleic Acids 14.6 Hormones
0/3
CHAPTER 15: POLYMERS
Topic Name 15 Polymers 15.1 Classification of Polymers 15.2 Types of Polymerisation Reactions 15.3 Molecular Mass of Polymers 15.4 Biodegradable Polymers 15.5 Polymers of Commercial Importance
0/3
CHAPTER 16: CHEMISTRY IN EVERYDAY LIFE
Topic Name 16 Chemistry in Everyday Life 16.1 Drugs and their Classification 16.2 Drug-Target Interaction 16.3 Therapeutic Action of Different Classes of Drugs 16.4 Chemicals in Food 16.5 Cleansing Agents
0/3
Class 12th Chemistry Online Class: Excelling in CBSE Board Exams
About Lesson

 

  • its spin around its own axis.
  • Electron being a charged particle undergoes these motions and can be considered as a small loop of current possessing a magnetic moment.
  • Therefore, each electron has a permanent spin and an orbital magnetic moment associated with it.
  • Magnitude of this magnetic moment is very small and is measured in the unit called Bohr magneton, μ B and is equal to 9.27 × 10–24A m2.

On the basis of their magnetic properties, substances can be classified into five categories:

  • Paramagnetic
  • Diamagnetic
  • Ferromagnetic
  • Antiferromagnetic
  • Ferrimagnetic.

Ferromagnetism

  • Ferromagnetic substances get strongly attracted towards magnetic field.
  • They can be permanently magnetized.
  • In solid state, the metal ions of ferromagnetic substances are grouped together into small regions and are known as domains that act as a tiny magnet.
  • In an unmagnetised ferromagnetic substance the domains are randomly oriented that cancels out their magnetic moments.
  • When placed in a magnetic field all the domains of the substance get oriented in the direction of the magnetic field producing a strong magnetic effect which persists even on removal of the magnetic field and the ferromagnetic substance becomes a permanent magnet.
  • For example, iron, cobalt, nickel, gadolinium and CrO2 are ferromagnetic substances.

1.24. What type of substances would make better permanent magnets, ferromagnetic or ferrimagnetic. Justify your answer. (NCERT Book)
Ans: Ferromagnetic substances make better permanent magnets. This is because when placed in magnetic field, their domains get oriented in the directions of magnetic field and a strong magnetic field is produced. This ordering of domains persists even when external magnetic field is removed. Hence, the ferromagnetic substance becomes a permanent magnet.

Question 26. ( The Solid State NCERT Solution )
Explain the following with suitable example:

  1. Ferromagnetism
  2. Paramagnetism
  3. Ferrimagnetism
  4. Antiferromagnetism
  5. 12-16 and 13-15 group compounds.

Solution:
(i) Ferromagnetic substances : Substances which are attracted very strongly by a magnetic field are called ferromagnetic substances, e.g., Fe, Ni, Co and CrO2 show ferromagnetism. Such substances remain permanently magnetised, once they have been magnetised. This type of magnetic moments are due to unpaired electrons in the same direction.The ferromagnetic material, CrO2, is used to make magnetic tapes used for audio recording.

(ii) Paramagnetic substances : Substances which are weakly attracted by the external magnetic field are called paramagnetic substances. The property thus exhibited is called paramagnetism. They are magnetised in the same direction as that of the applied field. This property is shown by those substances whose atoms, ions or molecules contain unpaired electrons, e.g., O2, Cu2+, Fe3+, etc. These substances, however, lose their magnetism in the absence of the magnetic field.

(iii) Ferrimagnetic substances : Substances which are expected to possess large magnetism on the basis of the unpaired electrons but actually have small net magnetic moment are called ferrimagnetic substances, e.g., Fe3O4, ferrites of the formula M2+Fe2O4 where M = Mg, Cu, Zn, etc. Ferrimagnetism arises due to the unequal number of magnetic moments in opposite direction resulting in some net magnetic moment.

(iv) Antiferromagnetic substances : Substances which are expected to possess paramagnetism or ferromagnetism on the basis of unpaired electrons but actually they possess zero net magnetic moment are called antiferromagnetic substances, e.g., MnO. Antiferromagnetism is due to the presence of equal number of magnetic moments in the opposite directions

(v) 13-15 group compounds : When the solid state materials are produced by combination of elements of groups 13 and 15, the compounds thus obtained are called 13-15 compounds. For example, InSb, AlP, GaAs, etc.

12-16 group compounds : Combination of elements of groups 12 and 16 yield some solid compounds which are referred to as 12-16 compounds. For example, ZnS, CdS, CdSe, HgTe, etc. In these compounds, the bonds have ionic character.

Wisdom TechSavvy Academy