Course Content
Class 10th Science
0/32
Class 10th Maths
0/86
Class 10th Online Course: Navigating CBSE Board Success with Wisdom TechSavvy Academy
About Lesson

Exercise 14.3 Page: 287

1. The following frequency distribution gives the monthly consumption of an electricity of 68 consumers in a locality. Find the median, mean and mode of the data and compare them.

Monthly consumption(in units) No. of customers
65-85 4
85-105 5
105-125 13
125-145 20
145-165 14
165-185 8
185-205 4

Solution:

Find the cumulative frequency of the given data as follows:

Class Interval Frequency Cumulative frequency
65-85 4 4
85-105 5 9
105-125 13 22
125-145 20 42
145-165 14 56
165-185 8 64
185-205 4 68
  N=68  

From the table, it is observed that, n = 68 and hence n/2=34

Hence, the median class is 125-145 with cumulative frequency = 42

Where, l = 125, n = 68, C= 22, f = 20, h = 20

Median is calculated as follows:

=125+((34−22)/20) × 20

=125+12 = 137

Therefore, median = 137

To calculate the mode:

Modal class = 125-145,

f1=20, f0=13, f2=14 & h = 20

Mode formula:

Mode = l+ [(f1-f0)/(2f1-f0-f2)]×h

Mode = 125 + ((20-13)/(40-13-14))×20

=125+(140/13)

=125+10.77

=135.77

Therefore, mode = 135.77

Calculate the Mean:

Class Interval fi xi di=xi-a ui=di/h fiui
65-85 4 75 -60 -3 -12
85-105 5 95 -40 -2 -10
105-125 13 115 -20 -1 -13
125-145 20 135 0 0 0
145-165 14 155 20 1 14
165-185 8 175 40 2 16
185-205 4 195 60 3 12
  Sum fi= 68       Sum fiui= 7

x̄ =a+h ∑fiui/∑fi =135+20(7/68)

Mean=137.05

In this case, mean, median and mode are more/less equal in this distribution.

2. If the median of a distribution given below is 28.5 then, find the value of x & y.

Class Interval Frequency
0-10 5
10-20 x
20-30 20
30-40 15
40-50 y
50-60 5
Total 60

Solution:

Given data, n = 60

Median of the given data = 28.5

Where, n/2 = 30

Median class is 20 – 30 with a cumulative frequency = 25+x

Lower limit of median class, = 20,

Cf = 5+x,

f = 20 & h = 10

Substitute the values

28.5=20+((30−5−x)/20) × 10

8.5 = (25 – x)/2

17 = 25-x

Therefore, x =8

Now, from cumulative frequency, we can identify the value of x + y as follows:

Since,

60=5+20+15+5+x+y

Now, substitute the value of x, to find y

60 = 5+20+15+5+8+y

y = 60-53

y = 7

Therefore, the value of x = 8 and y = 7.

3. The Life insurance agent found the following data for the distribution of ages of 100 policy holders. Calculate the median age, if policies are given only to the persons whose age is 18 years onwards but less than the 60 years.

Age (in years) Number of policy holder
Below 20 2
Below 25 6
Below 30 24
Below 35 45
Below 40 78
Below 45 89
Below 50 92
Below 55 98
Below 60 100

Solution:

Class interval Frequency Cumulative frequency
15-20 2 2
20-25 4 6
25-30 18 24
30-35 21 45
35-40 33 78
40-45 11 89
45-50 3 92
50-55 6 98
55-60 2 100

Given data: n = 100 and n/2 = 50

Median class = 35-45

Then, l = 35, cf = 45, f = 33 & h = 5

Median = 35+((50-45)/33) × 5

= 35 + (5/33)5

= 35.75

Therefore, the median age = 35.75 years.

4. The lengths of 40 leaves in a plant are measured correctly to the nearest millimeter, and the data obtained is represented as in the following table:

Length (in mm) Number of leaves
118-126 3
127-135 5
136-144 9
145-153 12
154-162 5
163-171 4
172-180 2

Find the median length of leaves.             

Solution:

Since the data are not continuous reduce 0.5 in the lower limit and add 0.5 in the upper limit.

Class Interval Frequency Cumulative frequency
117.5-126.5 3 3
126.5-135.5 5 8
135.5-144.5 9 17
144.5-153.5 12 29
153.5-162.5 5 34
162.5-171.5 4 38
171.5-180.5 2 40

So, the data obtained are:

n = 40 and n/2 = 20

Median class = 144.5-153.5

then, l = 144.5,

cf = 17, f = 12 & h = 9

Median = 144.5+((20-17)/12)×9

= 144.5+(9/4)

= 146.75 mm

Therefore, the median length of the leaves = 146.75 mm.

5. The following table gives the distribution of a life time of 400 neon lamps.

Lifetime (in hours) Number of lamps
1500-2000 14
2000-2500 56
2500-3000 60
3000-3500 86
3500-4000 74
4000-4500 62
4500-5000 48

Find the median lifetime of a lamp.

Solution:

Class Interval Frequency Cumulative
1500-2000 14 14
2000-2500 56 70
2500-3000 60 130
3000-3500 86 216
3500-4000 74 290
4000-4500 62 352
4500-5000 48 400

Data:

n = 400 &n/2 = 200

Median class = 3000 – 3500

Therefore, l = 3000, C= 130,

f = 86 & h = 500

Median = 3000 + ((200-130)/86) × 500

= 3000 + (35000/86)

= 3000 + 406.97

= 3406.97

Therefore, the median life time of the lamps = 3406.97 hours

6. In this 100 surnames were randomly picked up from a local telephone directory and the frequency distribution of the number of letters in English alphabets in the surnames was obtained as follows:

Number of letters 1-4 4-7 7-10 10-13 13-16 16-19
Number of surnames 6 30 40 16 4 4

Determine the number of median letters in the surnames. Find the number of mean letters in the surnames and also, find the size of modal in the surnames.

Solution:

To calculate median:

Class Interval Frequency Cumulative Frequency
1-4 6 6
4-7 30 36
7-10 40 76
10-13 16 92
13-16 4 96
16-19 4 100

Given:

n = 100 &n/2 = 50

Median class = 7-10

Therefore, l = 7, Cf = 36, f = 40 & h = 3

Median = 7+((50-36)/40) × 3

Median = 7+42/40

Median=8.05

Calculate the Mode:

Modal class = 7-10,

Where, l = 7, f1 = 40, f0 = 30, f2 = 16 & h = 3

Mode = 7+((40-30)/(2×40-30-16)) × 3

= 7+(30/34)

= 7.88

Therefore mode = 7.88

Calculate the Mean:

Class Interval fi xi fixi
1-4 6 2.5 15
4-7 30 5.5 165
7-10 40 8.5 340
10-13 16 11.5 184
13-16 4 14.5 51
16-19 4 17.5 70
  Sum fi = 100   Sum fixi = 825

Mean = x̄ = ∑fxi /∑f

Mean = 825/100 = 8.25

Therefore, mean = 8.25

7. The distributions of below give a weight of 30 students of a class. Find the median weight of a student.

Weight(in kg) 40-45 45-50 50-55 55-60 60-65 65-70 70-75
Number of students 2 3 8 6 6 3 2

Solution:

Class Interval Frequency Cumulative frequency
40-45 2 2
45-50 3 5
50-55 8 13
55-60 6 19
60-65 6 25
65-70 3 28
70-75 2 30

Given: n = 30 and n/2= 15

Median class = 55-60

l = 55, Cf = 13, f = 6 & h = 5

Median = 55+((15-13)/6)×5

Median=55 + (10/6) = 55+1.666

Median =56.67

Therefore, the median weight of the students = 56.67

Wisdom TechSavvy Academy