Course Content
Class 10th Science
0/32
Class 10th Maths
0/86
Class 10 Social Science History : India and the Contemporary World – II
0/16
Class 10 Social Science Geography : Contemporary India – II
0/14
Class 10 Social Science Civics (Political Science) : Democratic Politics – II
0/16
Class 10 Social Science Economics: Understanding Economic Development – II
0/10
Class 10 English First Flight Summary
0/22
Class 10 English First Flight Poem
0/22
Class 10 English Footprints without Feet Summary
0/20
Class 10th Online Course: Navigating CBSE Board Success with Wisdom TechSavvy Academy

### Exercise 8.4 Page: 193

1. Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.

Solution:

To convert the given trigonometric ratios in terms of cot functions, use trigonometric formulas

We know that,

cosec2A– cot2A = 1

cosec2A = 1 + cot2A

Since cosec function is the inverse of sin function, it is written as

1/sin2A = 1 + cot2A

Now, rearrange the terms, it becomes

sin2A = 1/(1+cot2A)

Now, take square roots on both sides, we get

sin A = ±1/(√(1+cot2A)

The above equation defines the sin function in terms of cot function

Now, to express sec function in terms of cot function, use this formula

sin2A = 1/ (1+cot2A)

Now, represent the sin function as cos function

1 – cos2A = 1/ (1+cot2A)

Rearrange the terms,

cos2A = 1 – 1/(1+cot2A)

⇒cos2A = (1-1+cot2A)/(1+cot2A)

Since sec function is the inverse of cos function,

⇒ 1/sec2A = cot2A/(1+cot2A)

Take the reciprocal and square roots on both sides, we get

⇒ sec A = ±√ (1+cot2A)/cotA

Now, to express tan function in terms of cot function

tan A = sin A/cos A and cot A = cos A/sin A

Since cot function is the inverse of tan function, it is rewritten as

tan A = 1/cot A

2. Write all the other trigonometric ratios of A in terms of sec A.

Solution:

Cos A function in terms of sec A:

sec A = 1/cos A

⇒ cos A = 1/sec A

sec A function in terms of sec A:

cos2A + sin2A = 1

Rearrange the terms

sin2A = 1 – cos2A

sin2A = 1 – (1/sec2A)

sin2A = (sec2A-1)/sec2A

sin A = ± √(sec2A-1)/sec A

cosec A function in terms of sec A:

sin A = 1/cosec A

⇒cosec A = 1/sin A

cosec A = ± sec A/√(sec2A-1)

Now, tan A function in terms of sec A:

sec2A – tan2A = 1

Rearrange the terms

⇒ tan2A = sec2A + 1

tan A = √(sec2A + 1)

cot A function in terms of sec A:

tan A = 1/cot A

⇒ cot A = 1/tan A

cot A = ±1/√(sec2A + 1)

3. Evaluate:

(i) (sin263° + sin227°)/(cos217° + cos273°)
(ii)  sin 25° cos 65° + cos 25° sin 65°

Solution:

(i) (sin263° + sin227°)/(cos217° + cos273°)

To simplify this, convert some of the sin functions into cos functions and cos function into sin function and it becomes,

= [sin2(90°-27°) + sin227°] / [cos2(90°-73°) + cos273°)]

= (cos227°+ sin227°)/(sin227° + cos273°)

= 1/1 =1                       (since sin2A + cos2A = 1)

Therefore, (sin263° + sin227°)/(cos217° + cos273°) = 1

(ii) sin 25° cos 65° + cos 25° sin 65°

To simplify this, convert some of the sin functions into cos functions and cos function into sin function and it becomes,

= sin(90°-25°) cos 65° + cos (90°-65°) sin 65°

= cos 65° cos 65° + sin 65° sin 65°

= cos265°+ sin265° = 1 (since sin2A + cos2A = 1)

Therefore, sin 25° cos 65° + cos 25° sin 65° = 1

4. Choose the correct option. Justify your choice.
(i) 9 sec2A – 9 tan2A =
(A) 1                 (B) 9              (C) 8                (D) 0
(ii) (1 + tan θ + sec θ) (1 + cot θ – cosec θ)
(A) 0                 (B) 1              (C) 2                (D) – 1
(iii) (sec A + tan A) (1 – sin A) =
(A) sec A           (B) sin A        (C) cosec A      (D) cos A

(iv) 1+tan2A/1+cot2A =

(A) secA                 (B) -1              (C) cot2A                (D) tan2A

Solution:

(i) (B) is correct.

Justification:

Take 9 outside, and it becomes

9 sec2A – 9 tan2A

= 9 (sec2A – tan2A)

= 9×1 = 9             (∵ sec2 A – tan2 A = 1)

Therefore, 9 sec2A – 9 tan2A = 9

(ii) (C) is correct

Justification:

(1 + tan θ + sec θ) (1 + cot θ – cosec θ)

We know that, tan θ = sin θ/cos θ

sec θ = 1/ cos θ

cot θ = cos θ/sin θ

cosec θ = 1/sin θ

Now, substitute the above values in the given problem, we get

= (1 + sin θ/cos θ + 1/ cos θ) (1 + cos θ/sin θ – 1/sin θ)

Simplify the above equation,

= (cos θ +sin θ+1)/cos θ × (sin θ+cos θ-1)/sin θ

= (cos θ+sin θ)2-12/(cos θ sin θ)

= (cos2θ + sin2θ + 2cos θ sin θ -1)/(cos θ sin θ)

= (1+ 2cos θ sin θ -1)/(cos θ sin θ) (Since cos2θ + sin2θ = 1)

= (2cos θ sin θ)/(cos θ sin θ) = 2

Therefore, (1 + tan θ + sec θ) (1 + cot θ – cosec θ) =2

(iii) (D) is correct.

Justification:

We know that,

Sec A= 1/cos A

Tan A = sin A / cos A

Now, substitute the above values in the given problem, we get

(secA + tanA) (1 – sinA)

= (1/cos A + sin A/cos A) (1 – sinA)

= (1+sin A/cos A) (1 – sinA)

= (1 – sin2A)/cos A

= cos2A/cos A = cos A

Therefore, (secA + tanA) (1 – sinA) = cos A

(iv) (D) is correct.

Justification:

We know that,

tan2A =1/cot2A

Now, substitute this in the given problem, we get

1+tan2A/1+cot2A

= (1+1/cot2A)/1+cot2A

= (cot2A+1/cot2A)×(1/1+cot2A)

= 1/cot2A = tan2A

So, 1+tan2A/1+cot2A = tan2A

5. Prove the following identities, where the angles involved are acute angles for which the
expressions are defined.

(i) (cosec θ – cot θ)= (1-cos θ)/(1+cos θ)

(ii) cos A/(1+sin A) + (1+sin A)/cos A = 2 sec A

(iii) tan θ/(1-cot θ) + cot θ/(1-tan θ) = 1 + sec θ cosec θ

[Hint : Write the expression in terms of sin θ and cos θ]

(iv) (1 + sec A)/sec A = sin2A/(1-cos A)

[Hint : Simplify LHS and RHS separately]

(v) ( cos A–sin A+1)/( cos A +sin A–1) = cosec A + cot A, using the identity cosec2A = 1+cot2A.

(vii) (sin θ – 2sin3θ)/(2cos3θ-cos θ) = tan θ
(viii) (sin A + cosec A)+ (cos A + sec A)2 = 7+tan2A+cot2A
(ix) (cosec A – sin A)(sec A – cos A) = 1/(tan A+cotA)
[Hint : Simplify LHS and RHS separately]
(x) (1+tan2A/1+cot2A) = (1-tan A/1-cot A)2 =tan2A

Solution:

(i) (cosec θ – cot θ)= (1-cos θ)/(1+cos θ)

To prove this, first take the Left-Hand side (L.H.S) of the given equation, to prove the Right Hand Side (R.H.S)

L.H.S. = (cosec θ – cot θ)2

The above equation is in the form of (a-b)2, and expand it

Since (a-b)2 = a2 + b2 – 2ab

Here a = cosec θ and b = cot θ

= (cosec2θ + cot2θ – 2cosec θ cot θ)

Now, apply the corresponding inverse functions and equivalent ratios to simplify

= (1/sin2θ + cos2θ/sin2θ – 2cos θ/sin2θ)

= (1 + cos2θ – 2cos θ)/(1 – cos2θ)

= (1-cos θ)2/(1 – cosθ)(1+cos θ)

= (1-cos θ)/(1+cos θ) = R.H.S.

Therefore, (cosec θ – cot θ)= (1-cos θ)/(1+cos θ)

Hence proved.

(ii)  (cos A/(1+sin A)) + ((1+sin A)/cos A) = 2 sec A

Now, take the L.H.S of the given equation.

L.H.S. = (cos A/(1+sin A)) + ((1+sin A)/cos A)

= [cos2A + (1+sin A)2]/(1+sin A)cos A

= (cos2A + sin2A + 1 + 2sin A)/(1+sin A) cos A

Since cos2A + sin2A = 1, we can write it as

= (1 + 1 + 2sin A)/(1+sin A) cos A

= (2+ 2sin A)/(1+sin A)cos A

= 2(1+sin A)/(1+sin A)cos A

= 2/cos A = 2 sec A = R.H.S.

L.H.S. = R.H.S.

(cos A/(1+sin A)) + ((1+sin A)/cos A) = 2 sec A

Hence proved.

(iii) tan θ/(1-cot θ) + cot θ/(1-tan θ) = 1 + sec θ cosec θ

L.H.S. = tan θ/(1-cot θ) + cot θ/(1-tan θ)

We know that tan θ =sin θ/cos θ

cot θ = cos θ/sin θ

Now, substitute it in the given equation, to convert it in a simplified form

= [(sin θ/cos θ)/1-(cos θ/sin θ)] + [(cos θ/sin θ)/1-(sin θ/cos θ)]

= [(sin θ/cos θ)/(sin θ-cos θ)/sin θ] + [(cos θ/sin θ)/(cos θ-sin θ)/cos θ]

= sin2θ/[cos θ(sin θ-cos θ)] + cos2θ/[sin θ(cos θ-sin θ)]

= sin2θ/[cos θ(sin θ-cos θ)] – cos2θ/[sin θ(sin θ-cos θ)]

= 1/(sin θ-cos θ) [(sin2θ/cos θ) – (cos2θ/sin θ)]

= 1/(sin θ-cos θ) × [(sin3θ – cos3θ)/sin θ cos θ]

= [(sin θ-cos θ)(sin2θ+cos2θ+sin θ cos θ)]/[(sin θ-cos θ)sin θ cos θ]

= (1 + sin θ cos θ)/sin θ cos θ

= 1/sin θ cos θ + 1

= 1 + sec θ cosec θ = R.H.S.

Therefore, L.H.S. = R.H.S.

Hence proved

(iv)  (1 + sec A)/sec A = sin2A/(1-cos A)

First find the simplified form of L.H.S

L.H.S. = (1 + sec A)/sec A

Since secant function is the inverse function of cos function and it is written as

= (1 + 1/cos A)/1/cos A

= (cos A + 1)/cos A/1/cos A

Therefore, (1 + sec A)/sec A = cos A + 1

R.H.S. = sin2A/(1-cos A)

We know that sin2A = (1 – cos2A), we get

= (1 – cos2A)/(1-cos A)

= (1-cos A)(1+cos A)/(1-cos A)

Therefore, sin2A/(1-cos A)= cos A + 1

L.H.S. = R.H.S.

Hence proved

(v) (cos A–sin A+1)/(cos A+sin A–1) = cosec A + cot A, using the identity cosec2A = 1+cot2A.

With the help of identity function, cosec2A = 1+cot2A, let us prove the above equation.

L.H.S. = (cos A–sin A+1)/(cos A+sin A–1)

Divide the numerator and denominator by sin A, we get

= (cos A–sin A+1)/sin A/(cos A+sin A–1)/sin A

We know that cos A/sin A = cot A and 1/sin A = cosec A

= (cot A – 1 + cosec A)/(cot A+ 1 – cosec A)

= (cot A – cosec2A + cot2A + cosec A)/(cot A+ 1 – cosec A) (using cosec2A – cot2A = 1

= [(cot A + cosec A) – (cosec2A – cot2A)]/(cot A+ 1 – cosec A)

= [(cot A + cosec A) – (cosec A + cot A)(cosec A – cot A)]/(1 – cosec A + cot A)

=  (cot A + cosec A)(1 – cosec A + cot A)/(1 – cosec A + cot A)

=  cot A + cosec A = R.H.S.

Therefore, (cos A–sin A+1)/(cos A+sin A–1) = cosec A + cot A

Hence Proved

First divide the numerator and denominator of L.H.S. by cos A,

We know that 1/cos A = sec A and sin A/ cos A = tan A and it becomes,

= √(sec A+ tan A)/(sec A-tan A)

Now using rationalization, we get

= (sec A + tan A)/1

= sec A + tan A = R.H.S

Hence proved

(vii) (sin θ – 2sin3θ)/(2cos3θ-cos θ) = tan θ

L.H.S. = (sin θ – 2sin3θ)/(2cos3θ – cos θ)

Take sin θ as in numerator and cos θ in denominator as outside, it becomes

= [sin θ(1 – 2sin2θ)]/[cos θ(2cos2θ- 1)]

We know that sin2θ = 1-cos2θ

= sin θ[1 – 2(1-cos2θ)]/[cos θ(2cos2θ -1)]

= [sin θ(2cos2θ -1)]/[cos θ(2cos2θ -1)]

= tan θ = R.H.S.

Hence proved

(viii) (sin A + cosec A)+ (cos A + sec A)2 = 7+tan2A+cot2A

L.H.S. = (sin A + cosec A)+ (cos A + sec A)2

It is of the form (a+b)2, expand it

(a+b)2 =a2 + b2 +2ab

= (sin2A + cosec2A + 2 sin A cosec A) + (cos2A + sec2A + 2 cos A sec A)

= (sin2A + cos2A) + 2 sin A(1/sin A) + 2 cos A(1/cos A) + 1 + tan2A + 1 + cot2A

= 1 + 2 + 2 + 2 + tan2A + cot2A

= 7+tan2A+cot2A = R.H.S.

Therefore, (sin A + cosec A)+ (cos A + sec A)2 = 7+tan2A+cot2A

Hence proved.

(ix) (cosec A – sin A)(sec A – cos A) = 1/(tan A+cotA)

First, find the simplified form of L.H.S

L.H.S. = (cosec A – sin A)(sec A – cos A)

Now, substitute the inverse and equivalent trigonometric ratio forms

= (1/sin A – sin A)(1/cos A – cos A)

= [(1-sin2A)/sin A][(1-cos2A)/cos A]

= (cos2A/sin A)×(sin2A/cos A)

= cos A sin A

Now, simplify the R.H.S

R.H.S. = 1/(tan A+cotA)

= 1/(sin A/cos A +cos A/sin A)

= 1/[(sin2A+cos2A)/sin A cos A]

= cos A sin A

L.H.S. = R.H.S.

(cosec A – sin A)(sec A – cos A) = 1/(tan A+cotA)

Hence proved

(x)  (1+tan2A/1+cot2A) = (1-tan A/1-cot A)2 =tan2A

L.H.S. = (1+tan2A/1+cot2A)

Since cot function is the inverse of tan function,

= (1+tan2A/1+1/tan2A)

= 1+tan2A/[(1+tan2A)/tan2A]

Now cancel the 1+tan2A terms, we get

= tan2A

(1+tan2A/1+cot2A) = tan2A

Similarly,

(1-tan A/1-cot A)2 =tan2A

Hence proved