Course Content
Class 11 Physics Chapter 4 Motion In A Plane
4 Motion in a plane 4.1 Introduction 4.2 Scalars and vectors 4.3 Multiplication of vectors by real numbers 4.4 Addition and subtraction of vectors – graphical method 4.5 Resolution of vectors 4.6 Vector addition – analytical method 4.7 Motion in a plane 4.8 Motion in a plane with constant acceleration 4.9 Relative velocity in two dimensions 4.10 Projectile motion 4.11 Uniform circular motion
0/8
Class 11 Physics Chapter 5 Laws of motion
Section Name Topic Name 5 Laws of motion 5.1 Introduction 5.2 Aristotle’s fallacy 5.3 The law of inertia 5.4 Newton’s first law of motion 5.5 Newton’s second law of motion 5.6 Newton’s third law of motion 5.7 Conservation of momentum 5.8 Equilibrium of a particle 5.9 Common forces in mechanics 5.10 Circular motion 5.11 Solving problems in mechanics
0/8
Class 11 Physics Chapter 6 Work Energy and Power
Section Name Topic Name 6 Work Energy and power 6.1 Introduction 6.2 Notions of work and kinetic energy : The work-energy theorem 6.3 Work 6.4 Kinetic energy 6.5 Work done by a variable force 6.6 The work-energy theorem for a variable force 6.7 The concept of potential energy 6.8 The conservation of mechanical energy 6.9 The potential energy of a spring 6.10 Various forms of energy : the law of conservation of energy 6.11 Power 6.12 Collisions
0/8
Class 11 Physics Chapter 7 Rotation motion
Topics Introduction Centre of mass Motion of COM Linear Momentum of System of Particles Vector Product Angular velocity Torque & Angular Momentum Conservation of Angular Momentum Equilibrium of Rigid Body Centre of Gravity Moment of Inertia Theorem of perpendicular axis Theorem of parallel axis Moment of Inertia of Objects Kinematics of Rotational Motion about a Fixed Axis Dynamics of Rotational Motion about a Fixed Axis Angular Momentum In Case of Rotation about a Fixed Axis Rolling motion
0/6
Class 11 Physics Chapter 9 mechanics properties of solid
Section Name Topic Name 9 Mechanical Properties Of Solids 9.1 Introduction 9.2 Elastic behaviour of solids 9.3 Stress and strain 9.4 Hooke’s law 9.5 Stress-strain curve 9.6 Elastic moduli 9.7 Applications of elastic behaviour of materials
0/6
Class 11 Physics Chapter 11 Thermal Properties of matter
Section Name Topic Name 11 Thermal Properties of matter 11.1 Introduction 11.2 Temperature and heat 11.3 Measurement of temperature 11.4 Ideal-gas equation and absolute temperature 11.5 Thermal expansion 11.6 Specific heat capacity 11.7 Calorimetry 11.8 Change of state 11.9 Heat transfer 11.10 Newton’s law of cooling
0/5
Class 11 Physics Chapter 14 Oscillations
Section Name Topic Name 14 Oscillations 14.1 Introduction 14.2 Periodic and oscilatory motions 14.3 Simple harmonic motion 14.4 Simple harmonic motion and uniform circular motion 14.5 Velocity and acceleration in simple harmonic motion 14.6 Force law for simple harmonic motion 14.7 Energy in simple harmonic motion 14.8 Some systems executing Simple Harmonic Motion 14.9 Damped simple harmonic motion 14.10 Forced oscillations and resonance
0/5
Class 11th Physics Online Class For 100% Result
About Lesson

NCERT Solutions for Class 11 Physics Chapter 14 Oscillations

QUESTIONS FROM TEXTBOOK ( Oscillations Notes )

Question 14. 1. Which of the following examples represent periodic motion?
(a) A swimmer completing one (return) trip from one bank of a river to the other and back.
(b) A freely suspended bar magnet displaced from its N-S direction and released.
(c) A hydrogen molecule rotating about its centre of mass.
(d) An arrow released from a bow.
Answer:  (a) It is not a periodic motion. Though the motion of a swimmer is to and fro but will not have a definite period.
(b) Since a freely suspended magnet if once displaced from N-S direction and released, it oscillates about this position, it is a periodic motion.
(c) The rotating motion of a hydrogen molecule about its centre of mass is periodic.
(d) Motion of an arrow released from a bow is non-periodic.

Question 14. 2. Which of the following examples represent (nearly) simple harmonic motion and which represent
periodic but not simple harmonic motion?
(a) the rotations of earth about its axis.
(b) motion of an oscillating mercury column in a U-tube.
(c) motion of a ball bearing inside a smooth curved bowl, when released from a point slightly above the lowermost point.
(d) general vibrations of a polyatomic molecule about its equilibrium position.
Answer: (a) Since the rotation of earth is not to and fro motion about a fixed point, thus it is periodic but not S.H.M.
(b) It is S.H.M.
(c) It is S.H.M.
(d) General vibrations of a polyatomic molecule about its equilibrium position is periodic but non SHM. In fact, it is a result of superposition of SHMs executed by individual vibrations of atoms of the molecule.

Class 11 Physics Chapter 14 Oscillations Notes and NCERT Solution. www.free-education.in provide study material to excel in exam.

Question 14. 5. A particle is in linear simple harmonic motion between two points, A and B, 10 cm apart. Take the direction from A to B as the positive direction and give the signs of velocity, acceleration and force on the particle when it is
(a) at the end A,
(b) at the end B,
(c) at the mid-point of AB going towards A,
(d) at 2 cm away from B going towards A,
(e) at 3 cm away from A going towards B, and (f)  at 4 cm away from B going towards A.
Answer:  In the fig. (given below), the points A and B, 10 cm apart, are the extreme positions of the particle in SHM, and the point O is the mean position. The direction from A to B is positive, as indicated.

Question 14. 6. Which of the following relationships between the acceleration a and the displacement x of a particle involve simple harmonic motion?
(a) a = 0.7x (b) a = – 200 x2
(c) a = – 10x (d) a = 100 x3
Answer:  Only (c) i.e., a = – 10x represents SHM. This is because acceleration is proportional and opposite to displacement (x).

Question 14. 12. Plot the corresponding reference circle for each of the following simple harmonic motions. Indicate the initial (t = 0) position of the particle, the radius of the circle, and the angular speed of the rotating particle. For simplicity, the sense of rotation may be fixed to be anti-clockwise in every case:
(x is in cm and t is in s)
(a) x = – 2 sin (3t + π /3)
(b) x = cos (π /6 – t)
(c) x = 3 sin (2πt + π /4)
(d) x = 2 cos π t.

Question 14. 20. An air chamber of volume V has a neck area of cross-section into which a ball of mass m just fits and can move up and down without any friction (Fig.). Shaw that when the ball is pressed down a little and released, it executes SHM. Obtain an expression for the time period of oscillations assuming pressure-volume variations of air to be isothermal.

Oscillations
Wisdom TechSavvy Academy