Course Content
Class 11 Physics Chapter 1 Physical World
Section Name Topic Name 1 Physical World 1.1 What is physics? 1.2 Scope and excitement of physics 1.3 Physics, technology and society 1.4 Fundamental forces in nature 1.5 Nature of physical laws
0/7
Class 11 Physics Chapter 2 Unit and Measurements
Unit and Measurements
0/11
Class 11 Physics Chapter 3 Motion In A Straight Line
Section Name Topic Name 3 Motion in a Straight Line 3.1 Introduction 3.2 Position, path length and displacement 3.3 Average velocity and average speed 3.4 Instantaneous velocity and speed 3.5 Acceleration 3.6 Kinematic equations for uniformly accelerated motion 3.7 Relative velocity
0/7
Class 11 Physics Chapter 4 Motion In A Plane
4 Motion in a plane 4.1 Introduction 4.2 Scalars and vectors 4.3 Multiplication of vectors by real numbers 4.4 Addition and subtraction of vectors – graphical method 4.5 Resolution of vectors 4.6 Vector addition – analytical method 4.7 Motion in a plane 4.8 Motion in a plane with constant acceleration 4.9 Relative velocity in two dimensions 4.10 Projectile motion 4.11 Uniform circular motion
0/8
Class 11 Physics Chapter 5 Laws of motion
Section Name Topic Name 5 Laws of motion 5.1 Introduction 5.2 Aristotle’s fallacy 5.3 The law of inertia 5.4 Newton’s first law of motion 5.5 Newton’s second law of motion 5.6 Newton’s third law of motion 5.7 Conservation of momentum 5.8 Equilibrium of a particle 5.9 Common forces in mechanics 5.10 Circular motion 5.11 Solving problems in mechanics
0/8
Class 11 Physics Chapter 6 Work Energy and Power
Section Name Topic Name 6 Work Energy and power 6.1 Introduction 6.2 Notions of work and kinetic energy : The work-energy theorem 6.3 Work 6.4 Kinetic energy 6.5 Work done by a variable force 6.6 The work-energy theorem for a variable force 6.7 The concept of potential energy 6.8 The conservation of mechanical energy 6.9 The potential energy of a spring 6.10 Various forms of energy : the law of conservation of energy 6.11 Power 6.12 Collisions
0/8
Class 11 Physics Chapter 7 Rotation motion
Topics Introduction Centre of mass Motion of COM Linear Momentum of System of Particles Vector Product Angular velocity Torque &amp; Angular Momentum Conservation of Angular Momentum Equilibrium of Rigid Body Centre of Gravity Moment of Inertia Theorem of perpendicular axis Theorem of parallel axis Moment of Inertia of Objects Kinematics of Rotational Motion about a Fixed Axis Dynamics of Rotational Motion about a Fixed Axis Angular Momentum In Case of Rotation about a Fixed Axis Rolling motion
0/6
Class 11 Physics Chapter 8 Gravitation
Section Name Topic Name 8 Gravitation 8.1 Introduction 8.2 Kepler’s laws 8.3 Universal law of gravitation 8.4 The gravitational constant 8.5 Acceleration due to gravity of the earth 8.6 Acceleration due to gravity below and above the surface of earth 8.7 Gravitational potential energy 8.8 Escape speed 8.9 Earth satellite 8.10 Energy of an orbiting satellite 8.11 Geostationary and polar satellites 8.12 Weightlessness
0/8
Class 11 Physics Chapter 9 mechanics properties of solid
Section Name Topic Name 9 Mechanical Properties Of Solids 9.1 Introduction 9.2 Elastic behaviour of solids 9.3 Stress and strain 9.4 Hooke’s law 9.5 Stress-strain curve 9.6 Elastic moduli 9.7 Applications of elastic behaviour of materials
0/6
Class 11 Physics Chapter 10 Mechanical Properties of Fluids
Section Name Topic Name 10 Mechanical Properties Of Fluids 10.1 Introduction 10.2 Pressure 10.3 Streamline flow 10.4 Bernoulli’s principle 10.5 Viscosity 10.6 Reynolds number 10.7 Surface tension
0/11
Class 11 Physics Chapter 11 Thermal Properties of matter
Section Name Topic Name 11 Thermal Properties of matter 11.1 Introduction 11.2 Temperature and heat 11.3 Measurement of temperature 11.4 Ideal-gas equation and absolute temperature 11.5 Thermal expansion 11.6 Specific heat capacity 11.7 Calorimetry 11.8 Change of state 11.9 Heat transfer 11.10 Newton’s law of cooling
0/5
Class 11 Physics Chapter 12 Thermodynamics
Section Name Topic Name 12 Thermodynamics 12.1 Introduction 12.2 Thermal equilibrium 12.3 Zeroth law of thermodynamics 12.4 Heat, internal energy and work 12.5 First law of thermodynamics 12.6 Specific heat capacity 12.7 Thermodynamic state variables and equation of state 12.8 Thermodynamic processes 12.9 Heat engines 12.10 Refrigerators and heat pumps 12.11 Second law of thermodynamics 12.12 Reversible and irreversible processes 12.13 Carnot engine
0/7
Class 11 Physics Chapter 13 Kinetic Theory
Section Name Topic Name 13 Kinetic Theory 13.1 Introduction 13.2 Molecular nature of matter 13.3 Behaviour of gases 13.4 Kinetic theory of an ideal gas 13.5 Law of equipartition of energy 13.6 Specific heat capacity 13.7 Mean free path
0/7
Class 11 Physics Chapter 14 Oscillations
Section Name Topic Name 14 Oscillations 14.1 Introduction 14.2 Periodic and oscilatory motions 14.3 Simple harmonic motion 14.4 Simple harmonic motion and uniform circular motion 14.5 Velocity and acceleration in simple harmonic motion 14.6 Force law for simple harmonic motion 14.7 Energy in simple harmonic motion 14.8 Some systems executing Simple Harmonic Motion 14.9 Damped simple harmonic motion 14.10 Forced oscillations and resonance
0/5
Class 11 Physics Chapter 15 Waves
Section Name Topic Name 15 Waves 15.1 Introduction 15.2 Transverse and longitudinal waves 15.3 Displacement relation in a progressive wave 15.4 The speed of a travelling wave 15.5 The principle of superposition of waves 15.6 Reflection of waves 15.7 Beats 15.8 Doppler effect
0/8
Class 11th Physics Online Class For 100% Result

QUESTIONS FROM TEXTBOOK ( Class 11 Physics Gravitation )

Question 8. 1. Answer the following:
(a) You can shield a charge from electrical forces by putting it inside a hollow conductor. Can you shield a body from the gravitational influence of nearby matter by putting it inside a hollow sphere or by some other means?
(b) An astronaut inside a small spaceship orbiting around the Earth cannot detect gravity. If the space station orbiting around the Earth has a large size, can he hope to detect gravity?
(c) If you compare the gravitational force on the Earth due to the Sun to that due to the Moon, you would find that the Sun’s pull is greater than the Moon’s pull. (You can check this yourself using the data available in the succeeding exercises). However, the tidal effect of the Moon’s pull is greater than the tidal effect of Sun. Why?
Answer: (a) No. Gravitational forces are independent of medium. A body cannot be shielded from the gravitational influence of nearby matter.
(b) Yes. If the size of the spaceship is extremely large, then the gravitational effect of the spaceship may become measurable. The variation in g can also be detected.
(c) Tidal effect depends inversely on the cube of the distance, unlike force which depends inversely on the square of the distance. Since the distance of moon from the ocean water is very small as compared to the distance of sun from the ocean water on earth. Therefore, the tidal effect of Moon’s pull is greater than the tidal effect of the sun.

Question 8. 2. Choose the correct alternative:
(a) Acceleration due to gravity increases/decreases with increasing altitude.
(b) Acceleration due to gravity increases/decreases with increasing depth (assume the Earth to be a sphere of uniform density).
(c) Acceleration due to gravity is independent of the mass of the Earth/mass of the body.
(d) The formula – GMm (1/r2-1/r1) is more/less accurate than the formula mg (r2 – r1) for the difference of potential energy between two points r2 and r1 distance away from the centre of the Earth.
(b) decreases
(c) mass of the body
(d) more

Question 8. 6. Choose the correct alternative:
(a) If the zero of potential energy is at infinity, the total energy of an orbiting satellite is negative of its kinetic/potential energy.
(b) The energy required to launch an orbiting satellite out of Earth’s gravitational influence is more/less than the energy required to project a stationary object at the same height (as the satellite) out of Earth’s influence.
Answer:  (a) If the zero of potential energy is at infinity, the total energy of an orbiting satellite is negative of its kinetic energy.
(b) The energy required to launch an orbiting satellite out of Earth’s gravitational influence is less than the energy required to project a stationary object at the same height (as the satellite) out of Earth’s influence.

Question 8. 8. A comet orbits the Sun in a highly elliptical orbit. Does the comet have a constant (a) linear speed (b) angular speed (c) angular momentum (d) kinetic energy (e) potential energy (f) total energy throughout its orbit? Neglect any mass loss of the comet when it comes very close to the Sun.
Answer: (a) The linear speed of the comet is variable in accordance with Kepler7s second law. When comet is near the sun, its speed is higher. When the comet is far away from the sun, its speed is very less.
(b) Angular speed also varies slightly.
(c) Comet has constant angular momentum.
(d) Kinetic energy does not remain constant.
(e) Potential energy varies along the path.
(f) Total energy throughout the orbit remains constant.

Question 8. 9.Which of the following symptoms is likely to afflict an astronaut in space (a) swollen feet, (b) swollen face, (c) headache, (d) orientational problem.
Answer: (a) The blood flow in feet would be lesser in zero gravity. So, the astronaut will not get swollen feet.
(b) In the conditions of weightlessness, the face of the astronaut is expected to get more supply. Due to it, the astronaut may develop swollen face.
(c) Due to more blood supply to face, the astronaut may get headache.
(d) Space also has orientation. We also have the frames of reference in space. Hence, orientational problem will affect the astronaut in space.

Question 8. 11. For the above problem, the direction of the gravitational intensity at an arbitrary point P is indicated by the arrow (i) d, (ii), e, (iii) f (iv) g.
Answer: Using the explanation given in the solution of the previous problem, the direction of the gravitational field intensity at P will be along e. So, option (ii) is correct.

Question 8. 13. How will you ‘weigh the sun’, that is, estimate its mass? The mean orbital radius of the earth around the sun is 1.5 x 108 km.
R = 1.5 x 108 km = 1.5 x 1011 m
Time period, T = 365.25 x 24 x 60 x 60 s
Let the mass of the Sun be M and that of Earth be m.

Question 8. 17. A rocket is fired vertically with a speed of 5 km s-1 from the earth’s surface. How far from the earth does the rocket go before returning to the earth? Mass of the earth = 6.0 x 1024 kg; mean radius of the earth = 6.4 x 106 m; G = 6.67 x 10-11 N m2 kg-2.
Answer:  Initial kinetic energy of rocket = 1/2 mv2 = 1/2 x m x (5000)2 = 1.25 x 107 mJ
At distance r from centre of earth, kinetic energy becomes zero
.•. Change in kinetic energy = 1.25 x 107 – 0 = 1.25 x 107 m J
This energy changes into potential energy.
Initial potential energy at the surface of earth = GMem/’r

Question 8. 20. Two stars each of one solar mass (=2 x 1030 kg) are approaching each other for a head on collision.When they are at a distance 109 km, their speeds are negligible. What is the speed with which they collide? The radius of each star is 104 km. Assume the stars to remain undistorted until they collide. (Use the known value of G).
Answer: Here, mass of each star, M = 2 x 1030 kg
Initial potential between two stars, r = 109 km = 1012 m.
Initial potential energy of the system = -GMm/r
Total K.E. of the stars = 1/2Mv2 + 1/2Mv2
where v is the speed of stars with which they collide. When the stars are about to collide, the distance between their centres, r’ = 2 R.
:. Final potential energy of two stars = -GMm/2R
Since gain in K.E. is at the cost of loss in P.E

Question 8. 21. Two heavy spheres each of mass 100 kg and radius 0.10 mare placed 1.0 m apart on ahorizontal table. What is the gravitational field and potential at the mid point of the line joining the centres of the spheres ? Is an object placed at that point in equilibrium ? If so, is the equilibrium stable or unstable?
Answer: Here G = 6.67 x 10-11 Nm2 kg-2; M = 100 kg; R = 0.1 m, distance between the two spheres, d = 1.0 m
Suppose that the distance of either sphere from the mid-point of the line joining their centre is r. Then r=d/2=0.5 m. The gravitational field at the mid-point due to two spheres will be equal and opposite.

Question 8. 23. A star 2.5 times the mass of the sun and collapsed to a size of 12 km rotates with a speed of 1.2 rev. per second. (Extremely compact stars of this kind are known as neutron stars. Certain stellar objects called pulsars belong to this category). Will an object placed on its equator remain stuck to its surface due to gravity? (mass of the sun = 2 x 1030 kg).
Answer: Acceleration due to gravity of the star,g= GM/R…………(i)
Here M is the mass and R is the radius of the star.
The outward centrifugal force acting on a body of mass m at the equator of the star =mv2/R =mR w2——-(ii)
From equation (i), the acceleration due to the gravity of the star

Question 8. 24. A spaceship is stationed on Mars. How much energy must be expended on the spaceship to rocket it out of the solar system? Mass of the spaceship = 1000 kg, Mass of the Sun = 2 x 1030 kg. Mass of the Mars = 6.4 x 1023 kg, Radius of Mars = 3395 km. Radius of the orbit of Mars = 2.28 x 1011 m, G = 6.67 x 10-11 N m2 kg-2.
Answer:  Let R be the radius of orbit of Mars and R’ be the radius of the Mars. M be the mass of the Sun and M’ be the mass of Mars. If m is the mass of the space-ship, then Potential energy of space-ship due to gravitational attraction of the Sun = – GM m/R Potential energy of space-ship due to gravitational attraction of Mars = – G M’ m/R’ Since the K.E. of space ship is zero, therefore,