Course Content
Class 11 Physics Chapter 4 Motion In A Plane
4 Motion in a plane 4.1 Introduction 4.2 Scalars and vectors 4.3 Multiplication of vectors by real numbers 4.4 Addition and subtraction of vectors – graphical method 4.5 Resolution of vectors 4.6 Vector addition – analytical method 4.7 Motion in a plane 4.8 Motion in a plane with constant acceleration 4.9 Relative velocity in two dimensions 4.10 Projectile motion 4.11 Uniform circular motion
0/8
Class 11 Physics Chapter 5 Laws of motion
Section Name Topic Name 5 Laws of motion 5.1 Introduction 5.2 Aristotle’s fallacy 5.3 The law of inertia 5.4 Newton’s first law of motion 5.5 Newton’s second law of motion 5.6 Newton’s third law of motion 5.7 Conservation of momentum 5.8 Equilibrium of a particle 5.9 Common forces in mechanics 5.10 Circular motion 5.11 Solving problems in mechanics
0/8
Class 11 Physics Chapter 6 Work Energy and Power
Section Name Topic Name 6 Work Energy and power 6.1 Introduction 6.2 Notions of work and kinetic energy : The work-energy theorem 6.3 Work 6.4 Kinetic energy 6.5 Work done by a variable force 6.6 The work-energy theorem for a variable force 6.7 The concept of potential energy 6.8 The conservation of mechanical energy 6.9 The potential energy of a spring 6.10 Various forms of energy : the law of conservation of energy 6.11 Power 6.12 Collisions
0/8
Class 11 Physics Chapter 7 Rotation motion
Topics Introduction Centre of mass Motion of COM Linear Momentum of System of Particles Vector Product Angular velocity Torque & Angular Momentum Conservation of Angular Momentum Equilibrium of Rigid Body Centre of Gravity Moment of Inertia Theorem of perpendicular axis Theorem of parallel axis Moment of Inertia of Objects Kinematics of Rotational Motion about a Fixed Axis Dynamics of Rotational Motion about a Fixed Axis Angular Momentum In Case of Rotation about a Fixed Axis Rolling motion
0/6
Class 11 Physics Chapter 9 mechanics properties of solid
Section Name Topic Name 9 Mechanical Properties Of Solids 9.1 Introduction 9.2 Elastic behaviour of solids 9.3 Stress and strain 9.4 Hooke’s law 9.5 Stress-strain curve 9.6 Elastic moduli 9.7 Applications of elastic behaviour of materials
0/6
Class 11 Physics Chapter 11 Thermal Properties of matter
Section Name Topic Name 11 Thermal Properties of matter 11.1 Introduction 11.2 Temperature and heat 11.3 Measurement of temperature 11.4 Ideal-gas equation and absolute temperature 11.5 Thermal expansion 11.6 Specific heat capacity 11.7 Calorimetry 11.8 Change of state 11.9 Heat transfer 11.10 Newton’s law of cooling
0/5
Class 11 Physics Chapter 14 Oscillations
Section Name Topic Name 14 Oscillations 14.1 Introduction 14.2 Periodic and oscilatory motions 14.3 Simple harmonic motion 14.4 Simple harmonic motion and uniform circular motion 14.5 Velocity and acceleration in simple harmonic motion 14.6 Force law for simple harmonic motion 14.7 Energy in simple harmonic motion 14.8 Some systems executing Simple Harmonic Motion 14.9 Damped simple harmonic motion 14.10 Forced oscillations and resonance
0/5
Class 11th Physics Online Class For 100% Result
About Lesson

Significant Figures

Every measurement results in a number that includes reliable digits and uncertain digits. Reliable digits plus the first uncertain digit are called significant digits or significant figures.These indicate the precision of measurement which depends on least count of measuring instrument.

Example, period of oscillation of a pendulum is 1.62 s. Here 1 and 6 are reliable and 2 is uncertain. Thus, the measured value has three significant figures.

Rules for determining number of significant figures

  • All non-zero digits are significant.
  • All zeros between two non-zero digits are significant irrespective of decimal place.
  • For a value less than 1, zeroes after decimal and before non-zero digits are not significant. Zero before decimal place in such a number is always insignificant.
  • Trailing zeroes in a number without decimal place are insignificant.
  • Trailing zeroes in a number with decimal place are significant.

Cautions to remove ambiguities in determining number of significant figures

  • Change of units should not change number of significant digits. Example, 4.700m = 470.0 cm = 4700 mm. In this, first two quantities have 4 but third quantity has 2 significant figures.
  • Use scientific notation to report measurements. Numbers should be expressed in powers of 10 like a x 10b where b is called order of magnitude. Example, 4.700 m = 4.700 x 102 cm = 4.700 x 103 mm = 4.700 x 10-3 In all the above, since power of 10 are irrelevant, number of significant figures are 4.
  • Multiplying or dividing exact numbers can have infinite number of significant digits. Example, radius = diameter / 2. Here 2 can be written as 2, 2.0, 2.00, 2.000 and so on.

Rules for Arithmetic operation with Significant Figures

Type

Multiplication or Division

Addition or Subtraction

Rule

The final result should retain as many significant figures as there in the original number with the lowest number of significant digits.

The final result should retain as many decimal places as there in the original number with the least decimal places.

Example

Density = Mass / Volume

 

if mass = 4.237 g (4 significant figures) and Volume = 2.51 cm3 (3 significant figures)

 

Density = 4.237 g/2.51 cm3 = 1.68804 g cm-3 = 1.69 g cm-3 (3 significant figures)

Addition of

436.32 (2 digits after decimal),

227.2 (1 digit after decimal) &  .301 (3 digits after decimal) is

= 663.821

 

Since 227.2 is precise up to only 1 decimal place, Hence, the final result should be 663.8

Rules for Rounding off the uncertain digits

Rounding off is necessary to reduce the number of insignificant figures to adhere to the rules of arithmetic operation with significant figures.

Rule Number

Insignificant Digit

Preceding Digit

Example (rounding off to two decimal places)

1

Insignificant digit to be dropped is more than 5

Preceding digit is raised by 1.

Number – 3.137

Result – 3.14

2

Insignificant digit to be dropped is less than 5

Preceding digit is left unchanged.

Number – 3.132

Result – 3.13

3

Insignificant digit to be dropped is equal to 5

If preceding digit is even, it is left unchanged.

Number – 3.125

Result – 3.12

4

Insignificant digit to be dropped is equal to 5

If preceding digit is odd, it is raised by 1.

Number – 3.135

Result – 3.14

Wisdom TechSavvy Academy