Course Content
Class 11 Physics Chapter 4 Motion In A Plane
4 Motion in a plane 4.1 Introduction 4.2 Scalars and vectors 4.3 Multiplication of vectors by real numbers 4.4 Addition and subtraction of vectors – graphical method 4.5 Resolution of vectors 4.6 Vector addition – analytical method 4.7 Motion in a plane 4.8 Motion in a plane with constant acceleration 4.9 Relative velocity in two dimensions 4.10 Projectile motion 4.11 Uniform circular motion
0/8
Class 11 Physics Chapter 5 Laws of motion
Section Name Topic Name 5 Laws of motion 5.1 Introduction 5.2 Aristotle’s fallacy 5.3 The law of inertia 5.4 Newton’s first law of motion 5.5 Newton’s second law of motion 5.6 Newton’s third law of motion 5.7 Conservation of momentum 5.8 Equilibrium of a particle 5.9 Common forces in mechanics 5.10 Circular motion 5.11 Solving problems in mechanics
0/8
Class 11 Physics Chapter 6 Work Energy and Power
Section Name Topic Name 6 Work Energy and power 6.1 Introduction 6.2 Notions of work and kinetic energy : The work-energy theorem 6.3 Work 6.4 Kinetic energy 6.5 Work done by a variable force 6.6 The work-energy theorem for a variable force 6.7 The concept of potential energy 6.8 The conservation of mechanical energy 6.9 The potential energy of a spring 6.10 Various forms of energy : the law of conservation of energy 6.11 Power 6.12 Collisions
0/8
Class 11 Physics Chapter 7 Rotation motion
Topics Introduction Centre of mass Motion of COM Linear Momentum of System of Particles Vector Product Angular velocity Torque & Angular Momentum Conservation of Angular Momentum Equilibrium of Rigid Body Centre of Gravity Moment of Inertia Theorem of perpendicular axis Theorem of parallel axis Moment of Inertia of Objects Kinematics of Rotational Motion about a Fixed Axis Dynamics of Rotational Motion about a Fixed Axis Angular Momentum In Case of Rotation about a Fixed Axis Rolling motion
0/6
Class 11 Physics Chapter 9 mechanics properties of solid
Section Name Topic Name 9 Mechanical Properties Of Solids 9.1 Introduction 9.2 Elastic behaviour of solids 9.3 Stress and strain 9.4 Hooke’s law 9.5 Stress-strain curve 9.6 Elastic moduli 9.7 Applications of elastic behaviour of materials
0/6
Class 11 Physics Chapter 11 Thermal Properties of matter
Section Name Topic Name 11 Thermal Properties of matter 11.1 Introduction 11.2 Temperature and heat 11.3 Measurement of temperature 11.4 Ideal-gas equation and absolute temperature 11.5 Thermal expansion 11.6 Specific heat capacity 11.7 Calorimetry 11.8 Change of state 11.9 Heat transfer 11.10 Newton’s law of cooling
0/5
Class 11 Physics Chapter 14 Oscillations
Section Name Topic Name 14 Oscillations 14.1 Introduction 14.2 Periodic and oscilatory motions 14.3 Simple harmonic motion 14.4 Simple harmonic motion and uniform circular motion 14.5 Velocity and acceleration in simple harmonic motion 14.6 Force law for simple harmonic motion 14.7 Energy in simple harmonic motion 14.8 Some systems executing Simple Harmonic Motion 14.9 Damped simple harmonic motion 14.10 Forced oscillations and resonance
0/5
Class 11th Physics Online Class For 100% Result
About Lesson

Fundamental Forces in nature

The forces which we see in our day to day life like muscular, friction, forces due to compression and elongation of springs and strings, fluid and gas pressure, electric, magnetic, interatomic and intermolecular forces are derived forces as their originations are due to a few fundamental forces in nature.

A few fundamental forces are:

  • Gravitational Force: It is the force of mutual attraction between any two objects by virtue of their masses. It is a universal force as every object experiences this force due to every other object in the universe.

  • Electromagnetic Force: It is the force between charged particles. Charges at rest have electric attraction (between unlike charges) and repulsion (between like charges). Charges in motion produce magnetic force. Together they are called Electromagnetic Force.

  • Strong Nuclear Force: It is the attractive force between protons and neutrons in a nucleus.It is charge-independent and acts equally between a proton and a proton, a neutron and a neutron, and a proton and a neutron. Recent discoveries show that protons and neutrons are built of elementary particles, quarks.

Below table shows difference between the above forces.

 

Name

Relative Strength

Range

Operates among

Gravitational force

10–39

Infinite

All objects in the universe

Weak nuclear force

10–13

Very short, Sub-nuclearsize (-10-16m)

Some elementary particles, particularly electron and neutrino

Electromagnetic force

10–2

Infinite

Charged particles

Strong nuclear force

1

Short, nuclear size (-10-15m)

Nucleons, heavier

elementary particles

 

Unification of Forces: There have been physicists who have tried to combine a few of the above fundamental forces. These are listed in table below.

Name of Physicist

Year

Achievement in Unification

Isaac Newton

1687

Unified celestial and terrestrial mechanics.

Hans Christian Oersted and Michael Faraday

1820 and 1830 respectively

Unified electric and magnetic phenomena to give rise to electromagnetism.

James Clerk Maxwell

1873

Unified electricity, magnetism and optics to show that light is an electromagnetic wave.

Sheldon Glashow, Abdus Salam, Steven Weinberg

Carlo Rubia, Simon Vander Meer

1979

 

 

1984

Gave the idea of electro-weak force which is a combination of electromagnetic and weak nuclear force.

 

Verified the theory of elctro-weak force.

 

Wisdom TechSavvy Academy