Course Content
Class 11 Physics Chapter 1 Physical World
Section Name Topic Name 1 Physical World 1.1 What is physics? 1.2 Scope and excitement of physics 1.3 Physics, technology and society 1.4 Fundamental forces in nature 1.5 Nature of physical laws
Class 11 Physics Chapter 4 Motion In A Plane
4 Motion in a plane 4.1 Introduction 4.2 Scalars and vectors 4.3 Multiplication of vectors by real numbers 4.4 Addition and subtraction of vectors – graphical method 4.5 Resolution of vectors 4.6 Vector addition – analytical method 4.7 Motion in a plane 4.8 Motion in a plane with constant acceleration 4.9 Relative velocity in two dimensions 4.10 Projectile motion 4.11 Uniform circular motion
Class 11 Physics Chapter 5 Laws of motion
Section Name Topic Name 5 Laws of motion 5.1 Introduction 5.2 Aristotle’s fallacy 5.3 The law of inertia 5.4 Newton’s first law of motion 5.5 Newton’s second law of motion 5.6 Newton’s third law of motion 5.7 Conservation of momentum 5.8 Equilibrium of a particle 5.9 Common forces in mechanics 5.10 Circular motion 5.11 Solving problems in mechanics
Class 11 Physics Chapter 6 Work Energy and Power
Section Name Topic Name 6 Work Energy and power 6.1 Introduction 6.2 Notions of work and kinetic energy : The work-energy theorem 6.3 Work 6.4 Kinetic energy 6.5 Work done by a variable force 6.6 The work-energy theorem for a variable force 6.7 The concept of potential energy 6.8 The conservation of mechanical energy 6.9 The potential energy of a spring 6.10 Various forms of energy : the law of conservation of energy 6.11 Power 6.12 Collisions
Class 11 Physics Chapter 7 Rotation motion
Topics Introduction Centre of mass Motion of COM Linear Momentum of System of Particles Vector Product Angular velocity Torque & Angular Momentum Conservation of Angular Momentum Equilibrium of Rigid Body Centre of Gravity Moment of Inertia Theorem of perpendicular axis Theorem of parallel axis Moment of Inertia of Objects Kinematics of Rotational Motion about a Fixed Axis Dynamics of Rotational Motion about a Fixed Axis Angular Momentum In Case of Rotation about a Fixed Axis Rolling motion
Class 11 Physics Chapter 9 mechanics properties of solid
Section Name Topic Name 9 Mechanical Properties Of Solids 9.1 Introduction 9.2 Elastic behaviour of solids 9.3 Stress and strain 9.4 Hooke’s law 9.5 Stress-strain curve 9.6 Elastic moduli 9.7 Applications of elastic behaviour of materials
Class 11 Physics Chapter 11 Thermal Properties of matter
Section Name Topic Name 11 Thermal Properties of matter 11.1 Introduction 11.2 Temperature and heat 11.3 Measurement of temperature 11.4 Ideal-gas equation and absolute temperature 11.5 Thermal expansion 11.6 Specific heat capacity 11.7 Calorimetry 11.8 Change of state 11.9 Heat transfer 11.10 Newton’s law of cooling
Class 11 Physics Chapter 14 Oscillations
Section Name Topic Name 14 Oscillations 14.1 Introduction 14.2 Periodic and oscilatory motions 14.3 Simple harmonic motion 14.4 Simple harmonic motion and uniform circular motion 14.5 Velocity and acceleration in simple harmonic motion 14.6 Force law for simple harmonic motion 14.7 Energy in simple harmonic motion 14.8 Some systems executing Simple Harmonic Motion 14.9 Damped simple harmonic motion 14.10 Forced oscillations and resonance
Class 11th Physics Online Class For 100% Result
About Lesson

Errors in a series of Measurements

Suppose the values obtained in several measurement are a1, a2, a3, …, an.

Arithmetic mean, amean = (a1+ a+ a3+ … + an)/n=

  • Absolute Error: The magnitude of the difference between the true value of the quantity and the individual measurement value is called absolute error of the measurement. It is denoted by a| (or Mod of Delta a). The mod value is always positive even if Δa is negative. The individual errors are:

Δa1 = amean – a1, Δa2 = amean – a2, ……. ,Δan = amean – an

  • Mean absolute error is the arithmetic mean of all absolute errors. It is represented by Δamean.

Δamean = (|Δa1| + |Δa2| +|Δa3| + …. +|Δan|) / n =

      For single measurement, the value of ‘a’ is always in the range amean± Δamean

                So, a =  amean ± Δamean Or amean – Δamean< a <amean + Δamean

  • Relative Error: It is the ratio of mean absolute error to the mean value of the quantity measured.

Relative Error = Δamean / amean

  • Percentage Error: It is the relative error expressed in percentage. It is denoted by δa.

δa = (Δamean / amean) x 100%

Combinations of Errors

If a quantity depends on two or more other quantities, the combination of errors in the two quantities helps to determine and predict the errors in the resultant quantity. There are several procedures for this.

Suppose two quantities A and B have values as A ± ΔA and B ± ΔB. Z is the result and ΔZ is the error due to combination of A and B.


Sum or Difference


Raised to Power

Resultant value Z

Z = A ± B

Z = AB

Z = Ak

Result with error

Z ± ΔZ = (A ± ΔA) + (B ± ΔB)

Z ± ΔZ = (A ± ΔA) (B ± ΔB)

Z ± ΔZ = (A ± ΔA)k

Resultant error range

± ΔZ = ± ΔA ± ΔB

ΔZ/Z = ΔA/A ± ΔB/B


Maximum error

ΔZ = ΔA + ΔB

ΔZ/Z = ΔA/A + ΔB/B

ΔZ/Z = k(ΔA/A)


Sum of absolute errors

Sum of relative errors

k times relative error


Exercise Files
No Attachment Found
No Attachment Found
Wisdom Academy