Course Content
Class 11 Physics Chapter 4 Motion In A Plane
4 Motion in a plane 4.1 Introduction 4.2 Scalars and vectors 4.3 Multiplication of vectors by real numbers 4.4 Addition and subtraction of vectors – graphical method 4.5 Resolution of vectors 4.6 Vector addition – analytical method 4.7 Motion in a plane 4.8 Motion in a plane with constant acceleration 4.9 Relative velocity in two dimensions 4.10 Projectile motion 4.11 Uniform circular motion
0/8
Class 11 Physics Chapter 5 Laws of motion
Section Name Topic Name 5 Laws of motion 5.1 Introduction 5.2 Aristotle’s fallacy 5.3 The law of inertia 5.4 Newton’s first law of motion 5.5 Newton’s second law of motion 5.6 Newton’s third law of motion 5.7 Conservation of momentum 5.8 Equilibrium of a particle 5.9 Common forces in mechanics 5.10 Circular motion 5.11 Solving problems in mechanics
0/8
Class 11 Physics Chapter 6 Work Energy and Power
Section Name Topic Name 6 Work Energy and power 6.1 Introduction 6.2 Notions of work and kinetic energy : The work-energy theorem 6.3 Work 6.4 Kinetic energy 6.5 Work done by a variable force 6.6 The work-energy theorem for a variable force 6.7 The concept of potential energy 6.8 The conservation of mechanical energy 6.9 The potential energy of a spring 6.10 Various forms of energy : the law of conservation of energy 6.11 Power 6.12 Collisions
0/8
Class 11 Physics Chapter 7 Rotation motion
Topics Introduction Centre of mass Motion of COM Linear Momentum of System of Particles Vector Product Angular velocity Torque & Angular Momentum Conservation of Angular Momentum Equilibrium of Rigid Body Centre of Gravity Moment of Inertia Theorem of perpendicular axis Theorem of parallel axis Moment of Inertia of Objects Kinematics of Rotational Motion about a Fixed Axis Dynamics of Rotational Motion about a Fixed Axis Angular Momentum In Case of Rotation about a Fixed Axis Rolling motion
0/6
Class 11 Physics Chapter 9 mechanics properties of solid
Section Name Topic Name 9 Mechanical Properties Of Solids 9.1 Introduction 9.2 Elastic behaviour of solids 9.3 Stress and strain 9.4 Hooke’s law 9.5 Stress-strain curve 9.6 Elastic moduli 9.7 Applications of elastic behaviour of materials
0/6
Class 11 Physics Chapter 11 Thermal Properties of matter
Section Name Topic Name 11 Thermal Properties of matter 11.1 Introduction 11.2 Temperature and heat 11.3 Measurement of temperature 11.4 Ideal-gas equation and absolute temperature 11.5 Thermal expansion 11.6 Specific heat capacity 11.7 Calorimetry 11.8 Change of state 11.9 Heat transfer 11.10 Newton’s law of cooling
0/5
Class 11 Physics Chapter 14 Oscillations
Section Name Topic Name 14 Oscillations 14.1 Introduction 14.2 Periodic and oscilatory motions 14.3 Simple harmonic motion 14.4 Simple harmonic motion and uniform circular motion 14.5 Velocity and acceleration in simple harmonic motion 14.6 Force law for simple harmonic motion 14.7 Energy in simple harmonic motion 14.8 Some systems executing Simple Harmonic Motion 14.9 Damped simple harmonic motion 14.10 Forced oscillations and resonance
0/5
Class 11th Physics Online Class For 100% Result
About Lesson

Science and its origin

Science is a systematic understanding of natural phenomena in detail so that it can be predicted, controlled and modified. Science involves exploring, experimenting and speculating phenomena happening around us.

  • The word Science is derived from a latin verb Scientiameaning ‘to know’.
  • Scientific method is a way to gain knowledge in a systematic and in-depth way. It involves:
    • Systematic observations
    • Controlled experiments
    • Qualitative and Quantitative reasoning
    • Mathematical modeling
    • Prediction and verification (or falsification) of theories
    • Speculation or Prediction
  • Science does not have any final theory. The improved observations, accurate tools keep improving the knowledge and perspective. Johannes Kepler used Tycho Brahe’s research on planetary motion to improve Nicolas Copernicus theory.
  • Quantum mechanics was developed to deal with atomic and nuclear phenomena. Work of Ernest Rutherford on nuclear model of atom became basis of quantum theory given by Niels Bohr. Antiparticle theory of Paul Dirac led to the discovery of antielectron (positron) by Carl Anderson.

Natural Sciences

Natural science is a branch of science concerned with the description, prediction, and understanding of natural phenomena, based on observational and empirical evidence. It consists of following disciplines:

  • Physics
  • Chemistry
  • Biology

Physics

Physics is a study of basic laws of nature and their manifestation in different natural phenomena. Physics is the study of physical world and matter and its motion through space and time, along with related concepts such as energy and force.

  • Word Physics is derived from a Greek word phusikḗmeaning nature.
  • Two principal types of approaches in Physics are:
    • Unification: This approach considers all of the world’s phenomena as a collection of universal laws in different domains and conditions. Example, law of gravitation applies both to a falling apple from a tree as well as motion of planets around the sun. Electromagnetism laws govern all electric and magnetic phenomena.
    • Reduction: This approach is to derive properties of complex systems from the properties and interaction of its constituent parts. Example, temperature studied under thermodynamics is also related to average kinetic energy of molecules in a system (kinetic theory).

Impact and uses of Physics

  • It can explain a phenomena happening over a large magnitude with a simple theory.
  • Experiments and observations are used to develop new theories for unidentified phenomena and improve old theories for existing phenomena.
  • Development of devices using laws of physics.
Join the conversation
Wisdom TechSavvy Academy